This study presents the benchmark calculations of proton affinities (PAs) and gas-phase basicities (GBs) of 8-para substituted benzaldehyde compounds using the multilevel model chemistries (G3B3 and G4), density-functional quantum model (B3LYP) and ab initio model (MP2). The results show that the computed properties are strongly correlated with the available experimental data. The PAs and the GBs of other eight para-substituted benzaldehyde compounds, for which the experimental data does not currently exist, have been calculated using G3B3 and B3LYP methods. The correlations between the experimental PAs and GBs with the computed properties such as PA, GB, chemical properties (bond lengths, electron density and δ H NMR chemical shift) of the investigated benzaldehydes have been studied and statistically analyzed. The influence of the substituted groups has been discussed in terms of inductive effect and electron donating and electron withdrawing effect. The results obtained show that the chemical properties of the benzaldehyde compounds are controlled by the strong coupling between the CHO group and the nature of the para-substituent groups through the benzene ring as a conducting linkage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.26538DOI Listing

Publication Analysis

Top Keywords

benzaldehyde compounds
16
benchmark calculations
8
calculations proton
8
g3b3 b3lyp
8
para-substituted benzaldehyde
8
computed properties
8
experimental data
8
pas gbs
8
chemical properties
8
proton affinity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!