Fibrillin-1 is an extracellular matrix protein which contains one conserved RGD integrin-binding motif. It constitutes the backbone of microfibrils in many tissues, and mutations in fibrillin-1 cause various connective tissue disorders. Although it is well established that fibrillin-1 interacts with several RGD-dependent integrins, very little is known about the associated intracellular signaling pathways. Recent published evidence identified a subset of miRNAs regulated by fibrillin-1 RGD-cell adhesion, with miR-1208 among the most downregulated. The present study shows that the downregulated miR-1208 controls fibroblast proliferation. Inhibitor experiments revealed that fibrillin-1 RGD suppressed miR-1208 expression via c-Src kinase and the downstream JNK signaling. Bioinformatic prediction and experimental target sequence validation demonstrated four miR-1208 binding sites on the ERK2 mRNA and one on the MEK1 mRNA. ERK2 and MEK1 are critical proliferation-promoting kinases. Decreased miR-1208 levels elevated the total and phosphorylated ERK1/2 and MEK1/2 protein levels and the phosphorylated to total ERK1/2 ratio. Together, the data demonstrate a novel outside-in signaling mechanism explaining how fibrillin-1 RGD-cell binding regulates fibroblast proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202100282R | DOI Listing |
J Transl Med
January 2025
Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Radiology, CR&WISCO GENERAL HOSPITAL, Wuhan, 430000, Hubei, China.
Salidroside, a natural herb, exerts considerable anti-tumor effects in various human cancers. Evidence unveils that Salidroside mediates gene expression to affect cancer progression. Our work intended to uncover the molecular mechanism of Salidroside functional role in keloid.
View Article and Find Full Text PDFTissue Cell
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.
A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types.
View Article and Find Full Text PDFWound Repair Regen
January 2025
Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Bacterial colonisation in hypertrophic scars (HSs) has been reported, yet the precise mechanism of their contribution to scar formation remains elusive. To address this, we examined HS and normal skin (NS) tissues through Gram staining and immunofluorescence. We co-cultured fibroblasts with heat-inactivated Staphylococcus aureus (S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!