Borreliosis is a common affliction in northern countries and its neurological manifestations often mislead trained clinicians. We present three cases of Lyme neuroborreliosis, with intrathecal synthesis of specific antibodies, lymphocytic meningitis and magnetic-resonance imaging (MRI) findings. Our description aims at illustrating the natural history of the infection, highlighting persistent intrathecal synthesis of anti-Borrelia antibodies months after treatment completion, and its clinical significance. We then review the literature on MRI findings in neuroborreliosis and the kinetics of intrathecal synthesis of specific anti-Borrelia antibodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.idnow.2021.02.006 | DOI Listing |
Background: Intrathecally (IT) delivered antisense oligonucleotides (ASOs) are promising therapies that can reduce tau pathology in Alzheimer's Disease (AD). However, current plasma and CSF sampling methods to estimate brain tissue exposure of ASOs are inherently limited, hampering ASO clinical developmental plans. We developed the PET tracer [F]BIO-687, which binds ASO conjugates (ASO-Tz) in vivo, allowing us to image ASO distribution in a living brain using "pretargeted" imaging.
View Article and Find Full Text PDFBackground: Intrathecally (IT) delivered antisense oligonucleotides (ASOs) are promising therapies that can reduce tau pathology in Alzheimer's Disease (AD). However, current plasma and CSF sampling methods to estimate brain tissue exposure of ASOs are inherently limited, hampering ASO clinical developmental plans. We developed the PET tracer [18F]BIO-687, which binds ASO conjugates (ASO-Tz) in vivo, allowing us to image ASO distribution in a living brain using "pretargeted" imaging.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
College of Life Sciences, Fujian Normal University; Fujian Key Laboratory of Developmental and Neuro Biology, Fuzhou 350117, China.
Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the -related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
Neuropathic pain is a type of pain caused by an injury or disease of the somatosensory nervous system. Currently, there is still absence of effective therapeutic drugs for neuropathic pain, so developing new therapeutic drugs is urgently needed. In the present study, we observed the effect of Comp 6d, a novel silent information regulator 1 (SIRT1) activator synthesized in our laboratory, on neuropathic pain and investigated the mechanisms involved.
View Article and Find Full Text PDFClin Exp Immunol
January 2025
Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
Neuro-Behçet's disease (NBD) is a more severe but rare symptom of Behçet's disease (BD), which is mainly divided into parenchymal NBD (p-NBD) involving brain stem, spinal cord, and cerebral cortex. Non-p-NBD manifests as intracranial aneurysm, cerebral venous thrombosis, peripheral nervous system injuries, and mixed parenchymal and non-parenchymal disease. P-NBD is pathologically characterized by perivasculitis presenting with cerebrospinal fluid (CSF) pleocytosis, elevated total protein, and central nervous system (CNS) infiltration of macrophages and neutrophils, which are subdivided into acute and chronic progressive stages according to relapsing-remitting courses and responses to steroids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!