Conformational Transition-Triggered Disassembly of Therapeutic Peptide Nanomedicine for Tumor Therapy.

Adv Healthc Mater

CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, P. R. China.

Published: December 2021

Cationic therapeutic peptides have received widespread attention due to their excellent antibacterial and antitumor properties. However, most of these peptides have undesirable delivery efficiency and high hemolytic toxicity due to the positively charged α-helix structure containing many lysine and arginine, which may restrict its in vivo applications. Herein, a conformationally transformed therapeutic peptide Pep-HCO modified with bicarbonates on guanidine groups is designed. Such a design allows Pep-HCO ((nap-RAGLQFPVGRLLRRLLRRLLR) nHCO ) to self-assemble into nanoparticles (NP-Pep) due to disrupting helix folding and the formation of intermolecular hydrogen bonding between bicarbonates and guanidine groups. When pH is from 7.4 to 6.5 at the tumor sites, guanidine bicarbonate can be hydrolyzed to form CO and guanidine groups, resulting in the disassembling of the NP-Pep into monomers α-Pep with a positively charged α-helix structure. In vivo, NP-Pep not only inhibits the tumor growth of xenografted mice with a twofold enhanced inhibition rate compared with α-Pep treatment group, but also significantly reduces the hemolytic toxicity by responding to the pH of tumor microenvironment. Therefore, the strategy of conformational transition-triggered disassembly of nanoparticles allows efficient delivery of cationic therapeutic peptides and lowering the hemolytic toxicity, which may provide an avenue for developing high-performance cationic peptide in vivo applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202100333DOI Listing

Publication Analysis

Top Keywords

hemolytic toxicity
12
guanidine groups
12
conformational transition-triggered
8
transition-triggered disassembly
8
therapeutic peptide
8
cationic therapeutic
8
therapeutic peptides
8
positively charged
8
charged α-helix
8
α-helix structure
8

Similar Publications

DMR040, a potential antifungal compound.

J Antibiot (Tokyo)

January 2025

Shanghai Duomirui Biotechnology Ltd., Shanghai, China.

Based on DMR022 [(AEEA-Gly)-AEEA-amphotericin B methyl ester, AEEA is the abbreviation of 8-amino-3,6-dioxaoctanoic acid] and DMR031 [(AEEA)-amphotericin B methyl ester], DMR040 [(AEEA)-amphotericin B methyl ester] was further designed and synthesised. Firstly, DMR040 was assessed for its antifungal activity and haemolytic toxicity with the broth dilution method and sterile defibrinated sheep blood, respectively. The minimal inhibitory concentration (MIC) of DMR040 (2 μg/mL) against Candida albicans ATCC 10231 and ATCC 90028 was reduced by 2 times compared to that of amphotericin B (1 μg/mL).

View Article and Find Full Text PDF

Rheumatoid arthritis (RA), a condition characterized by joint deterioration through the action of matrix metalloproteinases (MMPs), is prevalent worldwide. Bee venom (BV) has traditionally been used in Chinese medicine for pain, arthritis, rheumatism, skin diseases, etc. BV is enriched with active substances, notably melittin and phospholipase A2 (PLA2), offering significant therapeutic potential.

View Article and Find Full Text PDF

Design of Natterins-based peptides improves antimicrobial and antiviral activities.

Biotechnol Rep (Amst)

March 2025

Laboratory of Peptide Biochemistry, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, Brazil.

The biochemical analysis of animal venoms has been intensifying over the years, enabling the prediction of new molecules derived from toxins, harnessing the therapeutic potential of these molecules. From the venom of the fish , using methods for predicting antimicrobial and cell-penetrating peptides, two peptides from Natterins with promising characteristics were synthesized and subjected to and analysis. The peptides were subjected to stability tests and antimicrobial assays, cytotoxicity in murine fibroblast cells, antiviral assays against the Chikungunya virus, and the toxicity on was also evaluated.

View Article and Find Full Text PDF

Design, synthesis and activity evaluation of reduction-responsive anticancer peptide temporin-1CEa drug conjugates.

Bioorg Chem

December 2024

Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:

Membranes that destroy anticancer peptides can bind to negatively charged cancer cell membranes through electrostatic interactions, destroying their functions and leading to cancer cell necrosis. Temporin-1CEa, obtained from the skin secretions of the Chinese frog Rana chensinensis, is an anticancer peptide with 17 amino acid residues that exhibits concentration-dependent cytotoxicity against a variety of cancer cell lines, although it has no obvious cytotoxicity to normal HUVECs. In this work, we designed and synthesized 12 derivative peptides through double-cysteine scanning of temporin-1CEa-truncated peptides.

View Article and Find Full Text PDF

Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic , primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by ) in HUS has not yet been investigated. We hypothesized that HO-1 also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!