Concentrations of toxic metals (Cd, Hg and Pb) in the edible tissues of seven commercial fish species (Mullus barbatus, Merlangius merlangus, Scophthalmus maximus, Mugil cephalus, Engraulis encrasicolus, Trachurus mediterraneus and Sarda sarda) collected from Sinop coasts of the southern Black Sea were detected in 11 years. In several fish samples, the concentrations of elements (Cd, Hg and Pb) were not detected or were below the detection level. The present study showed that Pb was the most and Cd was the least accumulated metal in the studied fish species. The concentrations of those metals are below the international organizations' recommended limit. It was shown that the estimated metal dose values for daily average consumption and hazarded quotients (HI) in fish samples are below safety levels for human consumption (HI˂1). From the human health point of view, this study showed that there was no possible health risk to people due to intake of any studied species under the current consumption rate in the country for 11 years. This study could be useful as a baseline data for metals exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-021-02684-4 | DOI Listing |
Environ Sci Technol
January 2025
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Institute of Technical Education and Research, Siksha 'O' Anusandhan Deemed to Be University Bhubaneswar-751030 Odisha India
The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.
View Article and Find Full Text PDFJ Appl Toxicol
January 2025
Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
Cadmium (Cd) is a widely available metal that has been found to have a role in causing nonalcoholic fatty liver disease (NAFLD). However, the detailed toxicological targets and mechanisms by which Cd causes NAFLD are unknown. Therefore, the present work aims to reveal the main targets of action, cellular processes, and molecular pathways by which cadmium causes NAFLD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!