Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Our work analyzes the artificial intelligence and machine learning (AI/ML) research portfolios of six large research funding organizations from the United States [National Institutes of Health (NIH) and National Science Foundation (NSF)]; Europe [European Commission (EC) and European Research Council (ERC)]; China [National Natural Science Foundation of China (NNSFC)]; and Japan [Japan Society for the Promotion of Science (JSPS)]. The data for this analysis is based on 127,000 research clusters (RCs) that are derived from 1.4 billion citation links between 104.8 million documents from four databases (Dimensions, Microsoft Academic Graph, Web of Science, and the Chinese National Knowledge Infrastructure). Of these RCs, 600 large clusters are associated with AI/ML topics, and 161 of these AI/ML RCs are expected to experience extreme growth between May 2020 and May 2023. Funding acknowledgments (in the corpus of the 104.9 million documents) are used to characterize the overall AI/ML research portfolios of each organization. NNSFC is the largest funder of AI/ML research and disproportionately funds computer vision. The EC, RC, and JSPS focus more efforts on natural language processing and robotics. The NSF and ERC are more focused on fundamental advancement of AI/ML rather than on applications. They are more likely to participate in the RCs that are expected to have extreme growth. NIH funds the largest relative share of general AI/ML research papers (meaning in areas other than computer vision, natural language processing, and robotics). We briefly describe how insights such as these could be applied to portfolio management decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028401 | PMC |
http://dx.doi.org/10.3389/frma.2021.630124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!