Micro-computed tomography is a critical assessment tool for bone-related preclinical research, especially in murine models. To expedite the scanning process, researchers often image multiple bones simultaneously; however, it is unknown if this impacts scan quality and alters the ability to detect differences between experimental groups. The purpose of this study was to assess the effect of multibone scanning on detecting disease-induced changes in bone microarchitecture and mineral density by group scanning two murine models with known skeletal defects: the model of osteogenesis imperfecta and an adenine-induced model of chronic kidney disease. Adult male femurs were scanned individually and in random groups of three and eight in a Bruker Skyscan 1172 and 1176, respectively, then assessed for standard trabecular and cortical bone measures. Although scanning methodology altered raw values, with trabecular microarchitecture values more affected than cortical properties, a disease phenotype was still detectable in both group and solo scans. However, tissue mineral density in both trabecular and cortical bone was significantly impacted by group versus solo scanning. Researchers may be able to use small groupings in a single μCT scan to expedite preclinical analyses when the overall bone phenotype is large to decrease costs and increase speed of discoveries; however the details of scanning (single or group) should always be reported. © 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046121PMC
http://dx.doi.org/10.1002/jbm4.10473DOI Listing

Publication Analysis

Top Keywords

trabecular cortical
12
murine models
8
mineral density
8
cortical bone
8
scanning
6
group
5
bone
5
single versus
4
versus group
4
group μct
4

Similar Publications

This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.

View Article and Find Full Text PDF

This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).

View Article and Find Full Text PDF

Patients with radiographic axial spondyloarthritis (r-axSpA) experience a higher prevalence of fragility fractures, though the pathophysiology of osteoporosis associated with this disease remains poorly understood. The objective of this study was to evaluate the histomorphometric data in r-axSpA patients. Male r-axSpA patients up to 55 years old were enrolled in this cross-sectional study.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is an inheritable skeletal disorder characterized by bone fragility often caused by pathogenic variants in the COL1A1 gene. Current OI mouse models with a glycine substitution in Col1a1 exhibit excessive severity, thereby limiting long-term pathophysiological analysis and drug effect assessments. To address this limitation, we constructed a novel OI mouse model mimicking a patient with OI type III.

View Article and Find Full Text PDF

Purpose: Previous studies show that transgender and gender-diverse (TGD) individuals, especially those assigned male at birth (AMAB), often have low bone mineral density (BMD) before beginning gender-affirming hormone therapy (GAHT). The reasons for this are not fully understood, and the potential role of androgen receptor (AR) polymorphisms - known to affect bone density in the general population - has not been explored. This study aims to assess the impact of AR polymorphisms on bone health in the TGD population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!