A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Corrosion Behavior and Biocompatibility of Diamond-like Carbon-Coated Zinc: An In Vitro Study. | LitMetric

Owing to the desirable degradation rate and good biocompatibility, zinc (Zn) and Zn alloys are promising biodegradable implant metals in orthopedic and cardiovascular applications. Surface modification, such as deposition of coatings, is frequently implemented to further enhance their biological properties. In this study, diamond-like carbon (DLC) films are deposited on Zn by magnetron sputtering. The DLC films do not change the surface morphology of Zn but alter the hydrophobic properties with a contact angle of approximately 90°. Electrochemical and in vitro immersion tests reveal that the corrosion resistances of the DLC-coated Zn decrease unexpectedly, which is possibly due to galvanic corrosion between the DLC film and Zn substrate. Furthermore, the uncoated and coated Zn samples show hemolysis ratios less than 1%. The cells cultured in the Zn extract exhibit higher viability than those cultured in the extract of the DLC-coated Zn, suggesting that the DLC films decrease the cytocompatibility of Zn. The lower corrosion resistance has little influence on the hemolysis ratio, suggesting that hemolysis is not an obstacle for the design of Zn-based biomaterials. Our results show that the traditional concept of protection with DLC films may not be applicable universally and decreased corrosion resistance and cytocompatibility are actually observed in DLC-coated Zn.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047653PMC
http://dx.doi.org/10.1021/acsomega.1c00531DOI Listing

Publication Analysis

Top Keywords

dlc films
16
cultured extract
8
corrosion resistance
8
corrosion
5
dlc
5
corrosion behavior
4
behavior biocompatibility
4
biocompatibility diamond-like
4
diamond-like carbon-coated
4
carbon-coated zinc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!