Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A thermostable and organic solvent-tolerant bacterial laccase from ARA has been expressed heterologously and characterized, which shows potential decolorization capacity to various types of industrial synthetic dyes. The optimal temperature and pH were 85 °C and 3.5, respectively, while the purified recombinant laccase B.P.Lacc was stable under 55-75 °C and pH 5.0-8.0 conditions. The apparent kinetic parameters and of B.P.Lacc for ABTS as the substrate were 0.33 mM and 32.4 U/mg, respectively. Ethanol (1%, v/v) and methanol (2%, v/v) could stimulate the enzyme activity. The recombinant laccase retained over 95% of its initial activity in 10% (v/v) methanol. The optimal expression conditions for the laccase production of B.P.Lacc in LB medium were obtained: induction temperature of 25 °C, 0.4 mM Cu, and 1.0 mM IPTG added into the culture. After 5 h, the final laccase production was 1283 U/mL. Moreover, the laccase activity increased to 4822 U/mL after follow-up 2 h stationary cultivation, with about a 3.76-fold increase. The purified B.P.Lacc was able to efficiently decolorize synthetic dyes combined with mediators. Adding 1.0 mM ABTS, more than 90% of BRRB was decolorized by the enzyme, whether at pH 4.0 or pH 7.9. The outstanding enzymatic properties suggested that B.P.Lacc may be suitable for a wide application in future biodegradation fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047651 | PMC |
http://dx.doi.org/10.1021/acsomega.1c00370 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!