This investigation prospects the feasibility of optimizing the mechanical behavior and dimensional stability of termite's mound soil through alkaline activation. The raw aluminosilicate (termites' soil) was used without any pre-thermal treatment and natural occurring potash was used as the alkaline activator. Different activation level and different initial curing temperature were adopted to examine the effect of the initial temperature and the activator concentration on the Alkali Activated Termite Soil (AATS). Similarly, Scanning Electron Microscopy (SEM)/Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD) and Fourier Transform Infra-Red Spectroscopy (FTIR) were conducted to characterize the microstructure, to determine the crystallinity of the constituents and to identify the functional groups present within the specimens. These characterizations were carried out on the specimens at 15 days after their moulding. The compressive strength was determined for 7, 15 and 90 days to illuminate the fundamental of the optimization process. Results showed that the optimal initial curing temperature was 60 for the oven-dry regime at 3wt% activator with compressive strength of 2.56, 4.38 and 7.79 MPa at 7, 15 and 90 days respectively. From the mechanical performances results, the alkali stabilized termite's soil can be used as masonry elements predominantly submitted to compression. The repercussions of the results are analyzed for potential applications of the Alkaline Activation techniques as an environmental-friendly approach to obtain renewable and sustainable building materials at low cost with low energy consumption henceforth replicable in most of the regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035522 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e06597 | DOI Listing |
Poult Sci
January 2025
Ploufragan-Plouzané-Niort Laboratory, Epidemiology Health and Welfare Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France. Electronic address:
Appropriate disposal of dead farming animals is required to guarantee effective disease control while protecting the environment. In crisis situations, alternatives to rendering can be used, including on-farm burial. The objectives of this study were to: (i) describe the burial and monitoring protocols used on poultry farms in France in response to major avian influenza outbreaks; (ii) assess the effectiveness of the burial protocol, in terms of both technical and biosecurity aspects, and microbiological, physical and chemical changes of the buried materials and the environment over time; (iii) provide recommendations for future burial and follow-up protocols.
View Article and Find Full Text PDFIntegr Zool
January 2025
Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
The burrow microhabitats created by burrowing mammals, as a hotspot for biodiversity distribution in ecosystems, provide multiple critical resources for many other sympatric species. However, the cascading effects of burrow resources on sympatric animal community assemblages and interspecific interactions are largely unknown. During 2020-2023, we monitored 184 Chinese pangolin (Manis pentadactyla) burrows using camera traps to reveal the burrow utilization patterns of commensal species.
View Article and Find Full Text PDFJ Fungi (Basel)
October 2024
Department of Biology, Brandon University, 270-18th Street, Brandon, MB R7A 6A9, Canada.
The nests of mound-building ants are unexplored reservoirs of fungal diversity. A previous assessment of this diversity in the nests of suggested that water availability may be a determinant of the composition of this mycota. To investigate this question, we recovered 3594 isolates of filamentous Ascomycota from the nests of and adjacent, non-nest sites, employing Dichloran Rose Bengal agar (DRBA), Dichloran Rose Bengal agar containing glycerol (DRBAG), and malt extract agar containing sucrose (MEA20S).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.
Sci Total Environ
December 2024
Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Termites are important ecosystem engineers and play key roles in modulating microbial communities within and outside their mounds. Microbial diversity within termite mounds is generally lower than surrounding soils, due to termite-associated antimicrobial compounds and active sanitary behaviours. Microbial symbionts of termites can also influence the microbial landscape, by inhibiting or out-competing other microbes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!