The ubiquitin-specific protease 7 (USP7), as a deubiquitinating enzyme, plays an important role in tumor progression by various mechanisms and serves as a potential therapeutic target. However, the functional role of USP7 in melanoma remains elusive. Here, we found that USP7 is overexpressed in human melanoma by tissue microarray. We performed TMT-based quantitative proteomic analysis to evaluate the A375 human melanoma cells treated with siRNA of USP7. Our data revealed specific proteins as well as multiple pathways and processes that are impacted by USP7. We found that the phosphatidylinositol-3-kinases/Akt (PI3K-Akt), forkhead box O (FOXO), and AMP-activated protein kinase (AMPK) signaling pathways may be closely related to USP7 expression in melanoma. Moreover, knockdown of USP7 in A375 cells, particularly USP7 knockout using CRISPR-Cas9, verified that USP7 regulates cell proliferation and . The results showed that inhibition of USP7 increases expression of the AMPK beta (PRKAB1), caspase 7(CASP7), and protein phosphatase 2 subunit B R3 isoform (PPP2R3A), while attenuating expression of C subunit of vacuolar ATPase (ATP6V0C), and peroxisomal biogenesis factor 11 beta (PEX11B). In summary, these findings reveal an important role of USP7 in regulating melanoma progression PI3K/Akt/FOXO and AMPK signaling pathways and implicate USP7 as an attractive anticancer target for melanoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044529PMC
http://dx.doi.org/10.3389/fonc.2021.650165DOI Listing

Publication Analysis

Top Keywords

usp7
13
pi3k/akt/foxo ampk
8
role usp7
8
human melanoma
8
ampk signaling
8
signaling pathways
8
melanoma
7
proteome analysis
4
analysis usp7
4
usp7 substrates
4

Similar Publications

Hepatitis B is a viral infection of the liver caused by the hepatitis B virus (HBV). Entecavir (ETV) is considered the primary therapeutic option for HBV treatment, primarily functioning by inhibiting HBV replication. Ubiquitin-specific peptidase 7 (USP7), a deubiquitinating enzyme, plays a crucial role in regulating DNA repair mechanisms.

View Article and Find Full Text PDF

Background: The typical pathological feature of pancreatic ductal adenocarcinoma (PDAC) is a significant increase in stromal reaction, leading to a hypoxic and poorly vascularized tumor microenvironment. Tumor cells undergo metabolic reprogramming, such as the Warburg effect, yet the underlying mechanisms are not fully understood.

Methods: Interference and overexpression experiments were conducted to analyze the in vivo and in vitro effects of USP7 on the growth and glycolysis of tumor cells.

View Article and Find Full Text PDF

Background: Busulfan is the most commonly used drug for the treatment of chronic myelogenous leukemia and pretreatment for hematopoietic stem cell transplantation, which can damage the reproductive and immune system. However, little is known about the protein expression profiling in busulfan treated testis.

Methods: This research studies the proteomics for busulfan-induced spermatogenesis disorder.

View Article and Find Full Text PDF

Study Question: Can a genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) help identify genetic variation or genes associated with circulating anti-Müllerian hormone (AMH) levels in Samoan women?

Summary Answer: We identified eleven genome-wide suggestive loci (strongest association signal in 19-946163-G-C [ = 2.32 × 10⁻⁷]) and seven transcriptome-wide significant genes ( [all with a < 2.50 × 10⁻⁶]) associated with circulating AMH levels in Samoan women.

View Article and Find Full Text PDF

Kawasaki disease (KD), characterized by systematic vasculitis, is a leading cause of pediatric heart disease. Although recent studies have highlighted the critical role of deubiquitinases in vascular pathophysiology, their specific contribution to KD remains largely unknown. Herein, we investigated the function of the deubiquitinase USP7 in both KD patients and a CAWS-induced KD murine model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!