To develop a lab on a chip (LOC) integrated with both sensor and actuator functions, a novel two-in-one system based on optical-driven manipulation and sensing in a microfluidics setup based on a hydrogenated amorphous silicon (a-Si:H) layer on an indium tin oxide/glass is first realized. A high-intensity discharge xenon lamp functioned as the light source, a chopper functioned as the modulated illumination for a certain frequency, and a self-designed optical path projected on the digital micromirror device controlled by the digital light processing module was established as the illumination input signal with the ability of dynamic movement of projected patterns. For light-addressable potentiometric sensor (LAPS) operation, alternating current (AC)-modulated illumination with a frequency of 800 Hz can be generated by the rotation speed of the chopper for photocurrent vs bias voltage characterization. The pH sensitivity, drift coefficient, and hysteresis width of the SiN LAPS are 52.8 mV/pH, -3.2 mV/h, and 10.5 mV, respectively, which are comparable to the results from the conventional setup. With an identical two-in-one system, direct current illumination without chopper rotation and an AC bias voltage can be provided to an a-Si:H chip with a manipulation speed of 20 m/s for magnetic beads with a diameter of 1 m. The collection of magnetic beads by this light-actuated AC electroosmosis (LACE) operation at a frequency of 10 kHz can be easily realized. A fully customized design of an illumination path with less decay can be suggested to obtain a high efficiency of manipulation and a high signal-to-noise ratio of sensing. With this proposed setup, a potential LOC system based on LACE and LAPS is verified with the integration of a sensor and an actuator in a microfluidics setup for future point-of-care testing applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043754 | PMC |
http://dx.doi.org/10.1063/5.0040910 | DOI Listing |
Mikrochim Acta
December 2024
School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.
View Article and Find Full Text PDFBioelectrochemistry
April 2025
School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, PR China. Electronic address:
Glypican-3 (GPC3) is exclusively overexpressed in most Hepatocellular carcinoma (HCC) tissue but not in normal liver tissue, making it a promising biomarker for the precise detection of HCC. In this paper, a label-free light-addressable potentiometric sensor (LAPS) decorated by platinumpalladium-hemin-reduced graphene oxide nanocomposites (PtPd@H-rGO NCs) was constructed for determination of GPC3. The GPC3 aptamer (GPC3) and PtPd@H-rGO NCs were modified on the surface of silicon-based LAPS chip to build sensitive unit of LAPS system.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China. Electronic address:
Disruption and dysregulation of cellular calcium channel function can lead to diseases such as ischemic stroke, heart failure, and arrhythmias. Corresponding calcium channel drugs typically require preliminary efficacy evaluations using in vitro models such as cells and simulated tissues before clinical testing. However, traditional detection and evaluation methods often encounter challenges in long-term continuous monitoring and lack calcium specificity.
View Article and Find Full Text PDFSensors (Basel)
August 2024
Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan.
A light-addressable potentiometric sensor (LAPS) is a semiconductor-based sensor platform for sensing and imaging of various chemical species. Being a potentiometric sensor, no faradaic current flows through its sensing surface, and no electrochemical reaction takes place in the course of LAPS measurement. In this study, a four-electrode system is proposed, in which a LAPS is combined with the conventional three-electrode electrochemical system.
View Article and Find Full Text PDFSmall
November 2024
Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany.
This work exploits the possibility of using CdSe/ZnS quantum dot (QD)-electrodes to monitor the metabolism of living cells based on photoelectrochemical (PEC) measurements. To realize that, the PEC setup is improved with respect to an enhanced photocurrent signal, better stability, and an increased signal-to-noise ratio, but also for a better biocompatibility of the sensor surface on which cells have been grown. To achieve this, a QD-TiO heterojunction is introduced with the help of atomic layer deposition (ALD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!