The dangerously contagious virus named "COVID-19" has struck the world strong and has locked down billions of people in their homes to stop the further spread. All the researchers and scientists in various fields are continually developing a vaccine and prevention methods to aid the world from this challenging situation. However, a reliable prediction of the epidemic may help control this contiguous disease until the cure is available. The machine learning techniques are one of the frontiers in predicting this outbreak's future trend and behavior. Our research is focused on finding a suitable machine learning algorithm that can predict the COVID-19 daily new cases with higher accuracy. This research has used the adaptive neuro-fuzzy inference system (ANFIS) and the long short-term memory (LSTM) to foresee the newly infected cases in Bangladesh. We have compared both the experiments' results, and it can be forenamed that LSTM has shown more satisfactory results. Upon study and testing on several models, we have shown that LSTM works better on a scenario-based model for Bangladesh with mean absolute percentage error (MAPE)-4.51, root-mean-square error (RMSE)-6.55, and correlation coefficient-0.75. This study is expected to shed light on COVID-19 prediction models for researchers working with machine learning techniques and avoid proven failures, especially for small imprecise datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041393PMC
http://dx.doi.org/10.1007/s12559-021-09859-0DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning techniques
8
analysis prediction
4
prediction covid-19
4
covid-19 pandemic
4
pandemic bangladesh
4
bangladesh anfis
4
lstm
4
anfis lstm
4
lstm network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!