With the great progress made recently in next generation sequencing (NGS) technology, sequencing accuracy and throughput have increased, while the cost for data has decreased. Various human leukocyte antigen (HLA) typing algorithms and assays have been developed and have begun to be used in clinical practice. In this study, we compared the HLA typing performance of three HLA assays and seven NGS-based HLA algorithms and assessed the impact of sequencing depth and length on HLA typing accuracy based on 24 benchmarked samples. The algorithms HISAT-genotype and HLA-HD showed the highest accuracy at both the first field and the second field resolution, followed by HLAscan. Our internal capture-based HLA assay showed comparable performance with whole exome sequencing (WES). We found that the minimal depth was 100X for HISAT-genotype and HLA-HD to obtain more than 90% accuracy at the third field level. The top three algorithms were quite robust to the change of read length. Thus, we recommend using HISAT-genotype and HLA-HD for NGS-based HLA genotyping because of their higher accuracy and robustness to read length. We propose that a minimal sequence depth for obtaining more than 90% HLA typing accuracy at the third field level is 100X. Besides, targeting capture-based NGS HLA typing may be more suitable than WES in clinical practice due to its lower sequencing cost and higher HLA sequencing depth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8045758 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.652258 | DOI Listing |
HLA
February 2025
Temple University Hospital Philadelphia, Philadelphia, Pennsylvania, USA.
The full-length sequence of HLA-DQB1*06:304N covers the 5'-untranslated region (UTR), all introns and exons, and the 3' UTR.
View Article and Find Full Text PDFHLA
January 2025
Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
Novel MICB alleles MICB*004:01:31, MICB*004:01:32, MICB*004:01:33 and MICB*005:02:59, were identified using next generation sequencing.
View Article and Find Full Text PDFTranspl Int
January 2025
Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
Highly sensitized (HS) patients in need of kidney transplantation (KTx) typically spend a longer time waiting for compatible kidneys, are unlikely to receive an organ offer, and are at increased risk of antibody-mediated rejection (AMR). Desensitization using imlifidase, which is more rapid and removes total body immunoglobulin G (IgG) to a greater extent than other methods, enables transplantation to occur between HLA-incompatible (HLAi) donor-recipient pairs and allows patients to have greater access to KTx. However, when the project was launched there was limited data and clinical experience with desensitization in general and with imlifidase specifically.
View Article and Find Full Text PDFHLA
January 2025
School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina.
The novel HLA-C*06:44:02 allele differs from HLA-C*06:44:01 by one synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFHLA
January 2025
Department of Transfusion Research, Wuhan Blood Center, Wuhan, China.
HLA-B*15:245:02Q differs from HLA-B*15:01:01:01 by two nonsynonymous nucleotides exchanges in exon 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!