With the widespread development of the interventional technique for cardiovascular diseases and the widespread use of contrast medium (CM), the incidence of contrast-induced nephropathy (CIN) has been increasing, which is associated with poor prognosis for cardiovascular diseases. This study aims to explore the effect of circulating exosomal microRNA from patients with myocardial infarction (MI) on CIN and related molecular mechanism. A rat MI model was established by ligating the left anterior descending coronary artery. Circulating exosomes were isolated from control (Exo-NC) and MI rats (Exo-MI) using a commercial kit. The and models of CIN were created using iodixanol. Reverse transcription quantitative PCR (RT-qPCR) was utilized to detect the expression of miR-1-3p. Western blot (WB) was used to detect the expression of exosomal surface markers, and apoptosis-related and autophagy-related proteins. The apoptosis rate was examined by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining and flow cytometry (FC). Transmission electron microscopy (TEM) was utilized to observe the exosomes and autophagosomes. Rat kidney injury was assessed by hematoxylin and eosin (H&E) staining and kidney injury molecule-1 (KIM-1) immunohistochemical staining. Renal function of rats was assessed by detecting the levels of blood urea nitrogen (BUN) and serum creatinine (Cr). The dual luciferase reporter assay was performed to identify the target gene of miR-1-3p. The treatment of CM induced NRK-52E cell damage, which manifested as enhanced cell autophagy and enhanced apoptosis. The Exo-MI treatment significantly inhibited the CM-induced autophagy and apoptosis of NRK-52E cells. Furthermore, the Exo-MI treatment increased the Bcl-2 expression, but decreased the Bax expression and the ratio of LC3II/LC3I. Furthermore, the results of the TUNEL staining and FC showed that Exo-MI can reduce apoptotic rate. Through TEM, it was found that Exo-MI reduced the number of autophagosomes in NRK-52E cells. The rescue experiments revealed that the function of Exo-MI is to inhibit the CM-induced autophagy and apoptosis of NRK-52E cells, which can be inhibited by the miR-1-3p inhibitor. Furthermore, it was found that the overexpression of miR-1-3p can also inhibit the CM-induced autophagy and apoptosis of NRK-52E cells. Through dual luciferase reporter assay, ATG13 was found to be the target of miR-1-3p. In addition, the overexpression of miR-1-3p significantly reversed the CM-induced decrease in phosphorylation level of AKT. Furthermore, ATG13 silencing can also inhibit the CM-induced autophagy and apoptosis of NRK-52E cells. , Exo-MI significantly alleviated the renal injury, reduced the renal fibrosis, and improved the renal function of CIN rats. The circulating exosomal miR-1-3p after MI inhibited the CM-induced apoptosis and autophagy of renal tubular epithelial cells, and improved the renal function of rats by targeting ATG13 and activating the AKT signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040303PMC
http://dx.doi.org/10.7150/ijbs.55887DOI Listing

Publication Analysis

Top Keywords

nrk-52e cells
20
cm-induced autophagy
16
autophagy apoptosis
16
apoptosis nrk-52e
16
circulating exosomal
12
renal function
12
inhibit cm-induced
12
mir-1-3p
8
exosomal mir-1-3p
8
myocardial infarction
8

Similar Publications

Background: The calcium-sensitive receptor (CaSR) has been identified as a key factor in the formation of kidney stones. A substantial body of research has illuminated the function of CaSR in stone formation with respect to oxidative stress, epithelial injury, crystal adhesion, and stone-associated proteins. Nevertheless, as a pivotal molecule in renal calcium excretion, its pathway that contributes to stone formation by regulating calcium supersaturation remains underexplored.

View Article and Find Full Text PDF

Association between mitophagy and inflammasome in uric acid nephropathy.

Ren Fail

December 2024

Department of Nephrology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China.

Objective: This study was recruited to investigate the role of mitophagy in activating NLRP3 inflammasome in the kidney of uric acid (UA) nephropathy (UAN) rats.

Methods: This study developed a uric acid nephropathy (UAN) rat model divided into five groups: Negative control (NC), UAN model (M), UAN + autophagy inhibitor (3-MA), UAN + lysosome inhibitor (CQ), and ROS scavenger (N-acetylcysteine, N). H&E staining assessed renal structure, ROS levels were measured with 2, 7dichlorofluorescin diacetate, and ELISA measured serum markers (, , cystatin , , , ).

View Article and Find Full Text PDF

Melatonin: a potential therapeutic agent for alleviating renal tubular epithelial cell interstitial transformation.

J Physiol Pharmacol

October 2024

Department of Clinical Laboratory, Yantaishan Hospital, Yantai City, Shandong Province, 264003, China.

Melatonin (Mel) has been documented to modulate epithelial-mesenchymal transition (EMT) in cellular systems. The interstitial transformation of renal tubular epithelial cells constitutes a key pathogenic mechanism underlying renal fibrosis. This study aims to elucidate the role of Mel in the EMT process of renal tubular epithelial cells.

View Article and Find Full Text PDF

Chitooligosaccharide-modified PLGA-loaded PPD nanoparticles ameliorated sepsis-associated acute kidney injury the NF-κB signaling pathway.

Drug Dev Ind Pharm

December 2024

Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P. R. China.

Objectives: Sepsis-associated acute kidney injury (SA-AKI) is a significant clinical challenge with high morbidity and mortality. Low bioavailability of protopanaxadiol (PPD) limits its clinical application. In this study, PPD was encapsulated with chitooligosaccharide (COS) modified polylactic-co-glycolic acid (PLGA) to develop novel nanomedicines for the treatment of SA-AKI.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Acute kidney injury (AKI), a global public health concern that increases the risk of death, end-stage renal disease, and prolonged hospital admissions. As of this point, supportive measures like fluid resuscitation and replacement therapy for renal failure are the only treatments available for treating AKI. Asparagus racemosus (AR) also known as Shatavari, belongs to family Liliaceae and is considered exceptional in Ayurvedic medicine due to its versatility in treating and preventing a variety of illnesses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!