Calvarial critical-size defect has been used to assess techniques and materials in the bone regeneration field. Previous studies utilized young adult rats with 3 months of age, which might not reflect the geriatric conditions. This study aimed to assess the dimensions of the calvarial critical-size defect in aged rats.Seventy-two rats in a randomized block design were allocated into a control young adult (11-12 weeks), and a test old group (22-24 months). Both groups were divided according to bone defect's size: 3 mm, 5 mm, and 7 mm defects, which were surgically created and followed for 4 and 8 weeks. Radiographic and histologic analyses were performed. Based on the results, additional groups with 4 mm defect size were added following the same protocols. Young groups yielded higher bone volumes, defect closure percentages, and density of newly formed bone. Closure of cranial defects was only observed in 3 mm defects in both age groups after 8 weeks; however, the 4 mm defect group demonstrated bony bridging after 8 weeks in young but not old rats. Results confirmed that 5-mm defect is considered a critical size for calvarial bone defects in young adult rats; however, 4 mm defect might be considered critical size for the aged rats after 8 weeks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549460PMC
http://dx.doi.org/10.1097/SCS.0000000000007690DOI Listing

Publication Analysis

Top Keywords

critical size
12
young adult
12
4 mm defect
12
defect
8
calvarial critical-size
8
critical-size defect
8
adult rats
8
defect considered
8
considered critical
8
size
5

Similar Publications

Size effect-based improved antioxidant activity of selenium nanoparticles regulating Anti-PI3K-mTOR and Ras-MEK pathways for treating spinal cord injury to avoid hormone shock-induced immunosuppression.

J Nanobiotechnology

January 2025

Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.

Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).

View Article and Find Full Text PDF

Lung endothelial cell senescence impairs barrier function and promotes neutrophil adhesion and migration.

Geroscience

January 2025

Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.

Cellular senescence contributes to inflammation and organ dysfunction during aging. While this process is generally characterized by irreversible cell cycle arrest, its morphological features and functional impacts vary in different cells from various organs. In this study, we examined the expression of multiple senescent markers in the lungs of young and aged humans and mice, as well as in mouse lung endothelial cells cultured with a senescence inducer, suberoylanilide hydroxamic acid (SAHA), or doxorubicin (DOXO).

View Article and Find Full Text PDF

Background: Primary testicular lymphoma (PTL) is a rare malignancy whose epidemiology and prognosis have not been studied.

Materials And Methods: PTL patient data were collected from the SEER online database, and the data were divided into a training cohort and a validation cohort according to random assignment. The training cohort was subjected to a one-way COX regression analysis, and statistically significant differences were included in the multi-factor COX regression analysis and constructed nomograms.

View Article and Find Full Text PDF

Protective effects of wogonin in the treatment of central nervous system and degenerative diseases.

Brain Res Bull

January 2025

Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China. Electronic address:

Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties.

View Article and Find Full Text PDF

Background: The gluteus medius and minimus muscles play a critical role in hip biomechanics, however there is a paucity of literature examining the impact of preoperative gluteal pathology on outcomes following total hip arthroplasty (THA). This study compared pain, satisfaction, and functional outcomes among patients who had and did not have preoperative gluteal pathology after direct anterior (DA) THA.

Methods: Using an institutional total joint registry, patients undergoing DA THA for osteoarthritis between 2010 and 2022 were retrospectively reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!