Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: To examine the hypothesis that exercise training induces adaptation in cerebrovascular function, we recruited 63 older adults (62 ± 7 yr, 46 females) to undertake 24 wk of either land walking or water walking, or participate in a nonexercise control group. This is the first multi-interventional study to perform a comprehensive assessment of cerebrovascular function in response to longer term (6-month) training interventions, including water-based exercise, in older healthy individuals.
Methods: Intracranial blood flow velocities (middle cerebral artery (MCAv) and posterior cerebral artery) were assessed at rest and in response to neurovascular coupling, hypercapnic reactivity, and cerebral autoregulation.
Results: We observed no change in resting MCAv in response to either training intervention (pre vs post, mean (95% confidence interval), land walking: 65 (59-70) to 63 (57-68) cm·s-1, P = 0.33; water walking: 63 (58-69) to 61 (55-67) cm·s-1, P = 0.92) compared with controls and no change in neurovascular coupling (land walking: P = 0.18, water walking: P = 0.17). There was a significant but modest improvement in autoregulatory normalized gain after the intervention in the water-walking compared with the land-walking group (P = 0.03). Hypercapnic MCAv reactivity was not different based on exercise group (land: P = 087, water: P = 0.83); however, when data were pooled from the exercise groups, increases in fitness were correlated with decreases in hypercapnic reactivity (r2 = 0.25, P = 0.003).
Conclusions: Although exercise was not associated with systematic changes across multiple domains of cerebrovascular function, our data indicate that exercise may induce modest changes in autoregulation and CO2 reactivity. These findings should encourage further studies of the longer-term implications of exercise training on cerebrovascular health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1249/MSS.0000000000002685 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!