Background: Genome-Wide Association Studies (GWASs) have identified several genes associated with Schizophrenia (SCZ) and exponentially increased knowledge on the genetic basis of the disease. In addition, products of GWAS genes interact with neuronal factors coded by genes lacking association, such that this interaction may confer risk for specific phenotypes of this brain disorder. In this regard, fragile X mental retardation syndrome-related 1 (FXR1) gene has been GWAS associated with SCZ. FXR1 protein is regulated by glycogen synthase kinase-3β (GSK3β), which has been implicated in pathophysiology of SCZ and response to antipsychotics (APs). rs496250 and rs12630592, two eQTLs (Expression Quantitative Trait Loci) of FXR1 and GSK3β, respectively, interact on emotion stability and amygdala/prefrontal cortex activity during emotion processing. These two phenotypes are associated with Negative Symptoms (NSs) of SCZ suggesting that the interaction between these SNPs may also affect NS severity and responsiveness to medication.
Methods: To test this hypothesis, in two independent samples of patients with SCZ, we investigated rs496250 by rs12630592 interaction on NS severity and response to APs. We also tested a putative link between APs administration and FXR1 expression, as already reported for GSK3β expression.
Results: We found that rs496250 and rs12630592 interact on NS severity. We also found evidence suggesting interaction of these polymorphisms also on response to APs. This interaction was not present when looking at positive and general psychopathology scores. Furthermore, chronic olanzapine administration led to a reduction of FXR1 expression in mouse frontal cortex.
Discussion: Our findings suggest that, like GSK3β, FXR1 is affected by APs while shedding new light on the role of the FXR1/GSK3β pathway for NSs of SCZ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260562 | PMC |
http://dx.doi.org/10.1192/j.eurpsy.2021.26 | DOI Listing |
Eur Psychiatry
April 2021
Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.
Background: Genome-Wide Association Studies (GWASs) have identified several genes associated with Schizophrenia (SCZ) and exponentially increased knowledge on the genetic basis of the disease. In addition, products of GWAS genes interact with neuronal factors coded by genes lacking association, such that this interaction may confer risk for specific phenotypes of this brain disorder. In this regard, fragile X mental retardation syndrome-related 1 (FXR1) gene has been GWAS associated with SCZ.
View Article and Find Full Text PDFJ Affect Disord
April 2017
Centre de recherche de l'Institut universitaire en santé mentale de Québec du Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Québec, Canada; Département de psychiatrie et neurosciences, Université Laval, Québec, Canada.
Background: Previous evidence in healthy subjects suggested that functional polymorphisms GSK3B rs12630592 and FXR1 rs496250 interact in regulating mood and emotional processing. We attempted to replicate this interaction primarily on manic and depressive dimensions in mood disorder patients, and secondarily on schizophrenia patients, diagnosis itself and age of onset.
Methods: Symptom dimensions were derived from the Comprehensive Assessment of Symptoms and History 82 items rated lifetime in acute episodes and stabilized interepisode intervals in 384 patients from the Schizophrenia and Bipolar Disorder Eastern Quebec Kindred Study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!