Minimally invasive treatment via injectable delivery of cells has drawn extensive attention for tissue regeneration because it reduces the need for substantial open surgery and fits tissue defects with complex shapes, making it a suitable option for repairing articular cartilage defects. This work presents an alkaline treatment method to fabricate open-porous poly (lactic-co-glycolic acid) microspheres (OPMs) as bone marrow stromal cells (BMSCs) carriers for cartilage regeneration. OPMs have better biodegradation property and the extended pores can provide easier access for cells to the internal space. The BMSCs cultured with OPMs can display enhanced cell proliferation, up-regulated expression of cartilage-related mRNAs and proteins, and improved cartilage regeneration in vitro and in vivo. These results highlight the advantage and potential of using OPMs fabricated via simple alkaline treatment as injectable stem cell carriers for cartilage regeneration through minimally invasive procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.37196 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!