This study investigated the differentiation of transplanted transplanted mesenchymal stem cells MSCs into neuron-like cells, repair of erectile dysfunction (ED), and synergy of MSCs seeded to nanofibrous scaffolds with after transplantation around the injured cavernous nerve (CN) of rats. The synthesized polymer was electrospun in a rotating drum to prepare nanofiber meshes (NMs). Human MSCs were prepared and confirmed. Eight-week-old male Sprague-Dawley rats were divided into five groups of six each: group 1-sham operation; group 2-CN injury; group 3-MSCs treatment after CN injury; group 4-nanofibrous scaffold treatment after CN injury; and group 5-post-CN injury treatment combining a nanofibrous scaffold and MSCs (nano-MSCs). In the latter group, the damaged CN was instantly surrounded by an MSC-containing a nanofibrous scaffold in the aftermath of injury. Morphological analysis and immuno-histochemical staining in relation to nerves (Tuj1, NF, MAP2, MBP and peripherin), endothelium (vWF), smooth muscle (SMA), neurofilament (NF), and apoptosis (TUNEL) were performed. We evaluated the mean proportion expressed as a percentage of the ratio of muscle to collagen of penile cavernous smooth-muscle cells as well as the expression of cavernous SMA, NF, vWF, and TUNEL makers. Compared to the group free of CN injury, erectile function was markedly reduced in the group with CN injury at 2 and 4 weeks (p < 0.05). By contrast, compared to the sham operation group, erectile function was better in the group with MSC transplantation (p < 0.05). Similarly, by comparison to the group solely with hMSCs, erectile function was better in the group with nano-MSC transplantation (p < 0.05). Transplantation of MSCs demonstrated the neuronal differentiation. By contrast to MSCs on their own, neuronal differentiation was more significantly expressed in nano-MSCs. The mean proportion expressed as a percentage of the ratio of muscle to collagen of penile cavernous smooth-muscle cells, the expression of cavernous SMA, NF, vWF, and apoptosis improved in the cavernosum after transplantation. NMs showed synergy with MSCs for the repair of erectile dysfunction. Transplanted MSCs differentiated into neuron-like cells and repaired erectile dysfunction in the rats with CN injury. Transplanted MSCs increased the mean percentage of the collagen area of the caversnosum as well as the expression levels of cavernous neuronal, endothelial, smooth-muscle markers, and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-021-06332-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!