Three-dimensional (3D) integrated renal structures (IRS) segmentation targets segmenting the kidneys, renal tumors, arteries, and veins in one inference. Clinicians will benefit from the 3D IRS visual model for accurate preoperative planning and intraoperative guidance of laparoscopic partial nephrectomy (LPN). However, no success has been reported in 3D IRS segmentation due to the inherent challenges in grayscale distribution: low contrast caused by the narrow task-dependent distribution range of regions of interest (ROIs), and the networks representation preferences caused by the distribution variation inter-images. In this paper, we propose the Meta Greyscale Adaptive Network (MGANet), the first deep learning framework to simultaneously segment the kidney, renal tumors, arteries and veins on CTA images in one inference. It makes innovations in two collaborate aspects: 1) The Grayscale Interest Search (GIS) adaptively focuses segmentation networks on task-dependent grayscale distributions via scaling the window width and center with two cross-correlated coefficients for the first time, thus learning the fine-grained representation for fine segmentation. 2) The Meta Grayscale Adaptive (MGA) learning makes an image-level meta-learning strategy. It represents diverse robust features from multiple distributions, perceives the distribution characteristic, and generates the model parameters to fuse features dynamically according to image's distribution, thus adapting the grayscale distribution variation. This study enrolls 123 patients and the average Dice coefficients of the renal structures are up to 87.9%. Fine selection of the task-dependent grayscale distribution ranges and personalized fusion of multiple representations on different distributions will lead to better 3D IRS segmentation quality. Extensive experiments with promising results on renal structures reveal powerful segmentation accuracy and great clinical significance in renal cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2021.102055 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria.
Gentamicin (GM) administration is associated with decreased metabolism, increased oxidative stress, and induction of nephrotoxicity. L., containing flavonoids, anthocyanins, and phytosterols, possesses antioxidant and anti-inflammatory potential.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt.
The present study aims to create spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide derivatives with anticancer activities. The in vitro anticancer evaluation showed that only the novel spiro-acenaphthylene tethered-[1,3,4]-thiadiazole (compound ) exhibited significant anticancer efficacy as a selective inhibitor of tumor-associated isoforms of carbonic anhydrase. Compound demonstrated considerable efficacy against the renal RXF393, colon HT29, and melanoma LOX IMVI cancer cell lines, with IC values of 7.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Urology, Tufts University Medical Center, 800 Washington St., Boston, MA 02111, USA.
Background: Renal cell carcinoma tends to invade venous structures, frequently extending beyond the inferior vena cava and into the heart itself, such as into the right atrium or right ventricle. Resection of tumor burden, particularly tumor thrombus, often requires cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA), which is not feasible for all patients.
Methods: Described in this study is a novel, minimally invasive endovascular approach involving endovascular thrombectomy as a viable approach in these select patients.
Antioxidants (Basel)
December 2024
Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea.
Chronic kidney disease (CKD) progresses through mechanisms involving inflammation, fibrosis, and oxidative stress, leading to the gradual structural and functional deterioration of the kidneys. Tormentic acid (TA), a triterpenoid compound with known anti-inflammatory and antioxidant properties, shows significant potential in counteracting these pathological processes. This study explored the protective role of TA in a unilateral ureteral obstruction (UUO)-induced CKD model.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Chronic kidney disease (CKD) is a global health concern caused by conditions such as hypertension, diabetes, hyperlipidemia, and chronic nephritis, leading to structural and functional kidney injury. Kidney fibrosis is a common outcome of CKD progression, with abnormal fatty acid oxidation (FAO) disrupting renal energy homeostasis and leading to functional impairments. This results in maladaptive repair mechanisms and the secretion of profibrotic factors, and exacerbates renal fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!