Objectives: To characterize the physicochemical and mechanical properties of a milled fiber-reinforced composite (FRC) for implant-supported fixed dental prostheses (FDPs).
Methods: For FRC characterization, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier-transformed infrared spectrometry, simultaneous thermogravimetric analysis and differential scanning calorimetry were performed. For fatigue testing, 3-unit FRC frameworks were fabricated with conventional (9 mm connector area) and modified designs (12 mm connector area and 2.5 mm-height lingual extension). A hybrid resin composite was veneered onto the frameworks. FDPs were subjected to step-stress accelerated-life fatigue testing until fracture or suspension. Use level probability Weibull curves at 300 N were plotted and the reliability for 100,000 cycles at 300, 600 and 800 N was calculated. Fractographic analysis was performed by stereomicroscope and SEM.
Results: The FRC consisted of an epoxy resin (∼25%) matrix reinforced with inorganic particles and glass fibers (∼75%). Multi-layer continuous regular-geometry fibers were densely arranged in a parallel and bidirectional fashion in the resin matrix. Fatigue analysis demonstrated high probability of survival (99%) for FDPs at 300 N, irrespective of framework design. Conventional FDPs showed a progressive decrease in the reliability at 600 (84%) and 800 N (19%), whereas modified FDPs reliability significantly reduced only at 800 N (75%). The chief failure modes for FRC FDPs were cohesive fracture of the veneering composite on lower loads and adhesive fracture of the veneering composite at higher loads.
Significance: Milled epoxy resin matrix reinforced with glass fibers composite resulted in high probability of survival in the implant-supported prosthesis scenario.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2021.03.014 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy.
Purpose: Dimethyl fumarate (DMF), the first-line oral therapy for relapsing-remitting multiple sclerosis, is rapidly metabolized into monomethyl fumarate. The DMF oral administration provokes gastrointestinal discomfort causing treatment withdrawal. The present study aimed to develop an innovative formulation for DMF nasal administration.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Istanbul, Maslak, 34469, Turkey.
A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China. Electronic address:
Cartilage repair remains a formidable challenge because of its limited regenerative capacity. Construction of a biomimetic hydrogel matrix that can induce cell aggregation is a promising therapeutic option. Cell aggregates are more beneficial than dissociated cells for improving survival and chondrogenic differentiation, thereby facilitating cartilage repair.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia. Electronic address:
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
Herein, we developed multifunctional hydrogels formed between soybean protein (SPI)-gallic acid conjugate and oxidized dextran (ODex) via a Schiff base reaction. The effects of ODex on the morphology, structure, and functional properties of the hydrogels were elucidated. The results showed that the crosslinking modes in the hydrogels include hydrogen bonding, Schiff bases, Michael addition, and π-π stacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!