Short-term liveweight changes of dairy cows measured by stationary and walk-over weighing scales.

J Dairy Sci

School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; Sydney Institute of Agriculture, The University of Sydney, NSW 2006, Australia.

Published: July 2021

Monitoring and detecting individual cows' liveweight (LW) and liveweight change (LWC) are important for estimation of nutritional requirements and health management, and could be useful to measure short-term feed intake, water consumption, defecation, and urination. Walk-over weighing (WOW) systems can facilitate measurements of LW for these purposes, providing automated LW recorded at different times of the day. We conducted a field study to (1) quantify the contribution of feed and water intake, as well as urine and feces excretions, to short-term LWC and (2) determine the feasibility of stationary and WOW scales to detect subtle changes in LW as a result of feed and water intake, urination, and defecation. In this experiment, 10 cows walked through a WOW system and then stood individually on a stationary scale collecting weights at 10 and 3.3 Hz, respectively. Cows were offered 4 kg of feed and 10 kg of water on the stationary scale. For each animal, LW before and after eating and drinking was then calculated using different approaches. Liveweight change was calculated as the difference between the initial and final LW before and after eating and drinking for each statistical measure. The weights of feed intake, water consumption, urination, and defecation were measured and used as predictors of LWC. Urine and feces were collected from individual cows while the cow was on the scale, using a container, and weighed separately. The agreement between LWC measured using either stationary or WOW scales was assessed to determine the sensitivity of the scales to detect subtle changes in LW using the coefficient of determination (R), Lin's concordance correlation coefficient (CCC), and mean bias. The prediction model showed that most of the regression coefficients were not significantly different from +1.0 for feed and water, or -1.0 for urine and feces. The R and CCC values demonstrated a satisfactory agreement between calculated and stationary LWC and values ranged from 0.60 to 0.92 and 0.71 to 0.94, respectively. A moderate agreement was achieved between calculated and automated LWC with R and Lin's CCC values of 0.45 to 0.63 and 0.60 to 0.74, respectively. Therefore, results demonstrated that new algorithms and data processing methods need to be continuously explored and improved to obtain accurate measurements of LW to measure changes in LW, especially from WOW scales.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2020-19912DOI Listing

Publication Analysis

Top Keywords

feed water
16
urine feces
12
wow scales
12
measured stationary
8
walk-over weighing
8
liveweight change
8
feed intake
8
intake water
8
water consumption
8
water intake
8

Similar Publications

Effect of drinking water salinity on lactating cows' water and feed intake, milk yield, and rumen physiology.

Animal

December 2024

Department of Ruminant Science, Institute of Animal Science, Agricultural Research Organization, Rishon Lezion 7528809, Israel. Electronic address:

Use of desalinated seawater in arid and semiarid regions for domestic, industrial, and agricultural purposes is on the rise. Consequently, in those regions, drinking water offered to lactating cows has lower salinity and mineral concentrations than in the past. Although water with total dissolved solids (TDSs) of up to 1 000 ppm is considered safe for drinking, lower salinity level may affect rumen physiology, feed and water intake, or milk yield.

View Article and Find Full Text PDF

The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4.

View Article and Find Full Text PDF

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Residual Nitrite, Nitrate, and Volatile N-Nitrosamines in Organic and Conventional Ham and Salami Products.

Foods

January 2025

Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.

Nitrite and nitrate in meat products may be perceived negatively by consumers. These compounds can react to form carcinogenic volatile N-nitrosamines. "Nitrite-free" (i.

View Article and Find Full Text PDF

Prevalence of Antibiotic Resistance Genes in Differently Processed Smoothies and Fresh Produce from Austria.

Foods

December 2024

Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria.

Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE and the class 1 integron-integrase gene were detected by probe-based qPCR in concentrations up to 10 copies/mL in all smoothies, lettuce, carrots and a single tomato sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!