Molecular recognition is at the base of all biological events and its knowledge at atomic level is pivotal in the development of new drug design approaches. NMR spectroscopy is one of the most widely used technique to detect and characterize transient ligand-receptor interactions in solution. In particular, ligand-based NMR approaches, including NOE-based NMR techniques, diffusion experiments and relaxation methods, are excellent tools to investigate how ligands interact with their receptors. Here we describe the key structural information that can be achieved on binding processes thanks to the combined used of advanced NMR and computational methods. Saturation Transfer Difference NMR (STD-NMR), WaterLOGSY, diffusion- and relaxation-based experiments, together with tr-NOE techniques allow, indeed, to investigate the ligand behavior when bound to a receptor, determining, among others, the epitope map of the ligand and its bioactive conformation. The combination of these NMR techniques with computational methods, including docking, molecular dynamics and CORCEMA-ST analysis, permits to define and validate an accurate 3D model of protein-ligand complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2021.108313 | DOI Listing |
J Biomol Struct Dyn
December 2024
Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, India.
Antimicrobial Resistance poses a major threat to human health worldwide. Microorganisms develop multi-drug resistance due to intrinsic factors, evolutionary chromosomal alterations, and horizontal gene transfer. , a common nosocomial bacterium, can cause various infections and is classified as multidrug-resistant.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
Accurate prediction of drug-target binding affinity remains a fundamental challenge in contemporary drug discovery. Despite significant advances in computational methods for protein-ligand binding affinity prediction, current approaches still face substantial limitations in prediction accuracy. Moreover, the prevalent methodologies often overlook critical three-dimensional (3D) structural information, thereby constraining their practical utility in computer-aided drug design (CADD).
View Article and Find Full Text PDFBMC Biol
December 2024
Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
Background: Molecular interactions between proteins and their ligands are important for drug design. A pharmacophore consists of favorable molecular interactions in a protein binding site and can be utilized for virtual screening. Pharmacophores are easiest to identify from co-crystal structures of a bound protein-ligand complex.
View Article and Find Full Text PDFMol Cancer
December 2024
Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
Programmed cell death protein ligand-1 (PD-L1) and major histocompatibility complex I (MHC-I) are key molecules related to tumor immune evasion and resistance to programmed cell death protein 1 (PD-1)/PD-L1 blockade. Here, we demonstrated that the upregulation of all miRNAs in the miR-23a/27a/24 - 2 cluster was correlated with poor survival, immune evasion and PD-1/PD-L1 blockade resistance in patients with non-small cell lung cancer (NSCLC). The overexpression of all miRNAs in the miR-23a/27a/24 - 2 cluster upregulated PD-L1 expression by targeting Cbl proto-oncogene B (CBLB) and downregulated MHC-I expression by increasing the level of eukaryotic initiation factor 3B (eIF3B) via the targeting of microphthalmia-associated transcription factor (MITF).
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
School of Biotechnology, KIIT Deemed To be University, Bhubaneswar, Odisha, India.
The FIKK protein family, encompassing 21 serine-threonine protein kinases, is a distinctive cluster exclusive to the Apicomplexa phylum. Predominantly located in which is a malarial parasite, with a solitary gene identified in a distinct apicomplexan species, this family derives its nomenclature from - phenylalanine, isoleucine, lysine, lysine (FIKK), a conserved amino acid motif. Integral to the parasite's life cycle and consequential to malaria pathogenesis, the absence of orthologous proteins in eukaryotic organisms designates it as a promising antimalarial drug target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!