This paper introduces a framework for extending global climate and socioeconomic scenarios in order to study agricultural nutrient pollution on an individual catchment scale. Our framework builds on and extends Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) at the spatial and temporal scales that are relevant for the drivers of animal husbandry, manure recycling and the application of inorganic fertilisers in crop production. Our case study area is the Aura river catchment in South-West Finland, which discharges into the heavily eutrophic Baltic Sea. The Aura river catchment has intensive agriculture - both livestock and crop production. Locally adjusted and interpreted climate and socioeconomic scenarios were used as inputs to a field-level economic optimisation in order to study how farmers might react to the changing markets and climate conditions under different SSPs. The results on economically optimal fertilisation levels were then used as inputs to the spatially and temporally explicit nutrient loading model (VEMALA). Alternative manure recycling strategies that matched with SSP narratives were studied as means to reduce the phosphorus (P) overfertilisation in areas with high livestock density. According to our simulations, on average the P loads increased by 18% during 2071-2100 from the current level and the variation in P loads between scenarios was large (from -14% to +50%). By contrast, the nitrogen (N) loads had decreased on average by -9% (with variation from -20% to +3%) by the end of the current century. Phosphorus loading was most sensitive to manure recycling strategies and the speed of climate change. Nitrogen loading was less sensitive to changes in climate and socioeconomic drivers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.146871DOI Listing

Publication Analysis

Top Keywords

manure recycling
16
climate socioeconomic
12
agricultural nutrient
8
nutrient loading
8
socioeconomic scenarios
8
order study
8
crop production
8
aura river
8
river catchment
8
recycling strategies
8

Similar Publications

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

Potential of Pine Biochar to Mitigate Bacterial Hazards Present in Recycled Manure Solids from Dairy Cows.

Vet Sci

January 2025

Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal.

The use of recycled manure solids (RMS) as cow bedding in dairy farms poses concerns due to its potential to harbor pathogenic and antimicrobial-resistant bacteria. This study evaluated the impact of RMS supplementation with biochar at three concentrations (2.5%, 5%, and 10%) on bacterial counts and on the antimicrobial resistance and virulence profiles of and isolates.

View Article and Find Full Text PDF

Enhancing humification in high-temperature composting: Insights from endogenous and exogenous heating strategies.

Bioresour Technol

January 2025

Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China. Electronic address:

Livestock manure is difficult to manage for high moisture and nutrients. High-temperature composting (> 75 °C) reduces moisture. However, the humification process, crucial for nutrient recycling, remains poorly understood.

View Article and Find Full Text PDF

Phosphorus recovery through enhanced biological phosphorus removal (EBPR) processes from agricultural wastes holds promise in mitigating the impending global P shortage. However, the complex nutrient forms and the microbial augments, expected to exert a profound impact on crop rhizomicrobiome and thus crop health, remained unexplored. In this study, we investigated the impacts of EBPR biosolids on crops growth and rhizomicrobiome in comparison to chemical fertilizer and Vermont manure compost.

View Article and Find Full Text PDF

Heavy metal(loid)s accumulation and human health risk assessment in wheat after long-term application of various urban and rural organic fertilizers.

Sci Total Environ

January 2025

Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!