Investigation on removal effects and condensation characteristics of condensable particulate matter: Field test and experimental study.

Sci Total Environ

Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250014, China.

Published: August 2021

Condensable particulate matter (CPM) has become the main part of the total primary PM emitted from stationary sources and has aroused increasing concern. In this work, the removal effects of wet flue gas desulfurization (WFGD) on CPM components were studied. A new CPM-containing flue gas system was designed and used to investigate the condensation characteristics of 16 PAHs, sulfuric acid mist and SO conversion into CPM. Some interesting results were obtained and include the following: (i) The removal efficiencies of WFGD on both CPM inorganic and organic fraction reached 81.0% and 67.3%, respectively. (ii) The removal efficiency data obtained for C-C and 5-ring PAHs revealed that organic components with high boiling points and low volatility in CPM are easily removed by WFGD. Condensation experimental results indicated that the condensation ratios of PAHs generally increased with the number of fused benzene rings, while the increase of flue gas moisture content might inhibit the conversion of PAHs into CPM. (iii) The concentrations of SO, Ca, and Na accounted for 48.7% of CPM inorganic fraction after desulfurization, while Ca was barely removed by WFGD. Condensation experiments indicated that most SO in CPM arose from sulfuric acid mist, rather than from sulfate aerosols. Note that only <20% of the sulfuric acid mist belonged to the CPM category, which might help to develop specialized deep purification strategy for SO. In addition, SO could cause a high positive bias for the CPM field test although its condensation ratio was only 2.7%. This work provides a basic reference for subsequent CPM formation and reduction researches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.146985DOI Listing

Publication Analysis

Top Keywords

flue gas
12
removal effects
8
condensation characteristics
8
condensable particulate
8
particulate matter
8
cpm
8
wfgd cpm
8
sulfuric acid
8
acid mist
8
cpm inorganic
8

Similar Publications

Cobalt-Cluster-Based Metal-Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with CO from Flue Gas.

Inorg Chem

January 2025

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.

The fixation of carbon dioxide (CO) directly from flue gas into valuable chemicals like 2-oxazolidinones is of great significance for economic and environmental benefits, which is typically catalyzed by noble-metal catalysts and under harsh conditions. Herein, a novel 2-fold interpenetrated framework {[Co(μ-O)(TCA)(HDPTA)]·2HO·2DMF} [Co(II)-based metal-organic framework ()] containing [Co] clusters and highly dense amino groups (-NH) dispersed in the channel was prepared, exhibiting high solvent/pH stability and CO adsorption capacity (24.9 cm·g).

View Article and Find Full Text PDF

The sequestration of carbon dioxide using carbonic anhydrase (CA) is one of the most effective methods for mitigating global warming. The burning of fossil fuels releases large quantities of flue gas; because of its high temperature and of the alkaline conditions required for CaCO precipitation in the mineralization process, thermo-alkali-stable CAs are needed. In this context, Manyumwa et al.

View Article and Find Full Text PDF

This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effect of injecting flue gas (CO, N, and O) originating from coal-fired power plants into a coal seam on CH extraction and CO geological storage. To this end, a multifield thermal-fluid-solid-coupled mathematical model of flue gas injection extraction was established. The results showed that with the increase in time increase, the volume concentration of CH decreased, but the CO, N, and O increased.

View Article and Find Full Text PDF

This work studies the influence of flue gas composition, its moisture and ash content, on the efficiency of a CO adsorption/desorption process to capture the CO from flue gases along with its subsequent reuse in greenhouse CO enrichment (Patent ES2514090). The influence of the inlet flow rate, moisture, and ash content were analysed. The experimental conditions were based on those that are achievable under real operating conditions, namely an inlet flow rate from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!