Neonatal exposure to monosodium glutamate results in impaired auditory brainstem structure and function.

Hear Res

Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd, Erie, PA 16504, United States. Electronic address:

Published: June 2021

Excitotoxic injury during the neonatal period has been shown to result in neurodegenerative changes in several different brain regions. Exposure to monosodium glutamate (MSG) during the first two postnatal weeks results in glutamate neurotoxicity in the cochlea and has been shown to result in damage to cochlear hair cells and fewer neurons in the spiral ganglion. Further, we have shown that such exposure results in fewer neurons in the cochlear nucleus and superior olivary complex and abnormal expression of the calcium binding proteins calbindin and calretinin. Based on these findings, we hypothesized that neonatal MSG exposure would result in loss of neurons at more rostral levels in the auditory brainstem, and this exposure would result in abnormal brainstem auditory evoked potentials. We identified a significantly lower density of neurons in the spiral ganglion, heterogenous loss of neurons in the globular bushy cell-trapezoid body circuit, and fewer neurons in the nuclei of the lateral lemniscus and central nucleus of the inferior colliculus. The most severe loss of neurons was found in the inferior colliculus. Click-evoked auditory brainstem responses revealed significantly higher thresholds and longer latency responses, but these did not deteriorate with age. These results, together with our previous findings, indicate that neonatal exposure to MSG results in fewer neurons throughout the entire auditory brainstem and results in abnormal auditory brainstem responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2021.108243DOI Listing

Publication Analysis

Top Keywords

auditory brainstem
20
fewer neurons
16
loss neurons
12
neonatal exposure
8
exposure monosodium
8
monosodium glutamate
8
neurons
8
neurons spiral
8
spiral ganglion
8
exposure result
8

Similar Publications

Modern insights of nanotheranostics in the glioblastoma: An updated review.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea. Electronic address:

Glioblastoma multiforme (GBM) is a highly malignant subtype of glioma, originating from the glial cells that provide support to other neurons in the brain. GBM predominantly impacts the cerebral hemisphere of the brain, with minimal effects on the cerebellum, brain stem, or spinal cord. Individuals diagnosed with GBM commonly encounter a range of symptoms, starting from auditory abnormalities to seizures.

View Article and Find Full Text PDF

Genetic and audiological determinants of hearing loss in high-risk neonates.

Braz J Otorhinolaryngol

January 2025

Shanghai Jiao Tong University, School of Medicine, Hainan Branch of Shanghai Children's Medical Center, Department of Otorhinolaryngology, Sanya, China; Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Department of Otorhinolaryngology, Shanghai, China. Electronic address:

Objective: We aimed to investigate the correlation between prevalent risk factors for high-risk neonates in neonatal intensive care unit and their hearing loss, and to examine the audiological features and genetic profiles associated with different deafness mutations in our tertiary referral center. This research seeks to deepen our understanding of the etiology behind congenital hearing loss.

Methods: We conducted initial hearing screenings, including automated auditory brainstem response, distortion product otoacoustic emission, and acoustic immittance on 443 high-risk neonates within 7 days after birth and 42 days (if necessary) after birth.

View Article and Find Full Text PDF

Objectives: This study examined the relationships between electrophysiological measures of the electrically evoked auditory brainstem response (EABR) with speech perception measured in quiet after cochlear implantation (CI) to identify the ability of EABR to predict postoperative CI outcomes.

Methods: Thirty-four patients with congenital prelingual hearing loss, implanted with the same manufacturer's CI, were recruited. In each participant, the EABR was evoked at apical, middle, and basal electrode locations.

View Article and Find Full Text PDF

Background: The pathological hallmark of Ménière's disease is endolymphatic hydrops, which can lead to an increase in basilar membrane stiffness and, consequently, an acceleration of the traveling wave of sound. The cochlear hydrops analysis masking procedure (CHAMP), which is an auditory brainstem response test masked at various frequencies with high-pass noise masking, uses the principle of the traveling wave velocity theory to determine the presence of endolymphatic hydrops.

Purpose: This study aimed to review the previous results of the CHAMP, expound the principles and key indicators, and discuss its clinical significance in diagnosing Ménière's disease.

View Article and Find Full Text PDF

Post mortem cadaveric and imaging mapping analysis of the influence of cochlear implants on cMRI assessment regarding implant positioning and artifact formation.

Eur Arch Otorhinolaryngol

December 2024

Department of Otorhinolaryngology - Head and Neck Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.

Objectives: In times of an aging society and considering the escalating health economic costs, the indications for imaging, particularly magnetic resonance imaging (MRI), must be carefully considered and strictly adhered to. This cadaver study aims to examine the influence of cochlear implant (CI) on the assessment of intracranial structures, artifact formation, and size in cranial MRI (cMRI). Furthermore, it seeks to evaluate the potential limitations in the interpretability and diagnostic value of cMRI in CI patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!