The poor drug delivery and unsatisfying therapeutic effects remain to be the primary challenges for cancer therapy. Nanosystem that combines multiple functions into a single platform is an ideal strategy. Here, a smart drug delivery nanoplatform (Z@C-D/P) based on ZnO@CuS nanoparticles, loaded with doxorubicin (DOX) and pirfenidone (PFD) was constructed. Importantly, the β-CD-DMA and PEG-DMA could be activated in the mild acidic tumor microenvironment, then the nanosystem underwent charge reversal and PFD release. PFD could inhibit cancer-associated fibroblasts (CAFs) activation and enhance tumor penetration. And the residual nanostructure ZnO@CuS could trigger cascade amplified ROS generation to induce tumor cell death. The photothermal effect further strengthened the anti-tumor efficacy. Finally, the nanosystem showed remarkable inhibition of tumor growth (89.7%) and lung metastasis. The innovatively designed nanosystem integrating chemotherapy and photothermal effect would provide a promising strategy in breast cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2021.102399 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!