SAGA and SAGA-like SLIK transcriptional coactivators are structurally and biochemically equivalent.

J Biol Chem

Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. Electronic address:

Published: August 2021

The SAGA-like complex SLIK is a modified version of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. SLIK is formed through C-terminal truncation of the Spt7 SAGA subunit, causing loss of Spt8, one of the subunits that interacts with the TATA-binding protein (TBP). SLIK and SAGA are both coactivators of RNA polymerase II transcription in yeast, and both SAGA and SLIK perform chromatin modifications. The two complexes have been speculated to uniquely contribute to transcriptional regulation, but their respective contributions are not clear. To investigate, we assayed the chromatin modifying functions of SAGA and SLIK, revealing identical kinetics on minimal substrates in vitro. We also examined the binding of SAGA and SLIK to TBP and concluded that interestingly, both protein complexes have similar affinity for TBP. Additionally, despite the loss of Spt8 and C-terminus of Spt7 in SLIK, TBP prebound to SLIK is not released in the presence of TATA-box DNA, just like TBP prebound to SAGA. Furthermore, we determined a low-resolution cryo-EM structure of SLIK, revealing a modular architecture identical to SAGA. Finally, we performed a comprehensive study of DNA-binding properties of both coactivators. Purified SAGA and SLIK both associate with ssDNA and dsDNA with high affinity (K = 10-17 nM), and the binding is sequence-independent. In conclusion, our study shows that the cleavage of Spt7 and the absence of the Spt8 subunit in SLIK neither drive any major conformational differences in its structure compared with SAGA, nor significantly affect HAT, DUB, or DNA-binding activities in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131915PMC
http://dx.doi.org/10.1016/j.jbc.2021.100671DOI Listing

Publication Analysis

Top Keywords

saga slik
16
slik
12
saga
11
complex slik
8
loss spt8
8
slik revealing
8
slik tbp
8
tbp prebound
8
tbp
5
saga saga-like
4

Similar Publications

Compared to replicative lifespan, epigenetic regulation of chronological lifespan (CLS) is less well understood in yeast. Here, by screening all the viable mutants of histone acetyltransferase (HAT) and histone deacetylase (HDAC), we demonstrate that Gcn5, functioning in the HAT module of the SAGA/SLIK complex, exhibits an epistatic relationship with the HDAC Hda1 to control the expression of starvation-induced stress response and respiratory cell growth. Surprisingly, the mutants lose their colony-forming potential early in the stationary phase but display a longer maximum CLS than their WT counterparts, suggesting the contradictory roles of Gcn5 in lifespan regulation.

View Article and Find Full Text PDF

SAGA and SAGA-like SLIK transcriptional coactivators are structurally and biochemically equivalent.

J Biol Chem

August 2021

Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. Electronic address:

The SAGA-like complex SLIK is a modified version of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. SLIK is formed through C-terminal truncation of the Spt7 SAGA subunit, causing loss of Spt8, one of the subunits that interacts with the TATA-binding protein (TBP). SLIK and SAGA are both coactivators of RNA polymerase II transcription in yeast, and both SAGA and SLIK perform chromatin modifications.

View Article and Find Full Text PDF

The post-translational acetylation of the histone components of chromatin mediates numerous DNA-templated events, including transcriptional activation, DNA repair, and genomic replication. The conserved SAGA (Spt-Ada-Gcn5 Acetyltranferase) and SLIK (SAGA-Like) Histone Acetyltransferase (HAT) complexes are required for transcriptional activation of a subset of yeast genes and contain multiple subunits including the histone fold-containing TBP- Associated Factors (TAFs): 6, 9, 10, and 12. These TAFs are also components of the TFIID complex and are consequently involved in most RNA polymerase II-transcription in yeast.

View Article and Find Full Text PDF

Nuclear pore complexes (NPCs) control gene expression by regulating the bi-directional exchange of proteins and RNAs between nuclear and cytoplasmic compartments, including access of transcriptional regulators to the nucleoplasm. Here, we show that the yeast () nucleoporin Nup170, in addition to binding and silencing subtelomeric genes, supports transcription of genes regulated by the SAGA transcriptional activator complex. Specifically, we show that a lower amount of SAGA complex is bound to target genes in the absence of Nup170.

View Article and Find Full Text PDF

Chromatin remodeling regulates gene expression in response to the accumulation of misfolded polyQ proteins associated with Huntington's disease (HD). Tra1 is an essential component of both the SAGA/SLIK and NuA4 transcription co-activator complexes and is linked to multiple cellular processes, including protein trafficking and signaling pathways associated with misfolded protein stress. Cells with compromised Tra1 activity display phenotypes distinct from deletions encoding components of the SAGA and NuA4 complexes, indicating a potentially unique regulatory role of Tra1 in the cellular response to protein misfolding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!