Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.17399 | DOI Listing |
Physiol Plant
December 2024
Department of Animal Biology, Plant Biology and Ecology; Plant Physiology Lab, Universitat Autònoma de Barcelona, Barcelona, Spain.
Carbonic anhydrases (CAs) are the main enzymes handling bicarbonate in the different cell compartments. This study analyses the expression of CAs in roots of Arabidopsis thaliana demes differing in tolerance to bicarbonate: the tolerant A1 deme and the sensitive deme, T6. Exposure to 10 mM NaCl caused a transient depolarization of the root cell membranes, and in contrast, the supply of 10 mM NaHCO caused hyperpolarization.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
Lack of O and high concentrations of iron (Fe) are common in flooded soils where Rice (Oryza sativa L.) is cultivated. We tested the hypothesis that growing in stagnant or high Fe conditions might induce the formation of apoplastic barriers in roots with different properties and chemical compositions.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada.
The plant lipid polymers cutin and suberin play a critical role in many aspects of plant growth and development, and physiology. The mechanisms of cutin and suberin biosynthesis are relatively well understood thanks to just over two decades of work with primarily Arabidopsis (Arabidopsis thaliana) mutants. Recent advances in our understanding of cutin and suberin structure have arisen through the application of novel chemistries targeted at quantitative comprehension of intermolecular linkages, isolating intact suberins and cutins, and the application of advanced analytical techniques.
View Article and Find Full Text PDFNat Plants
December 2024
National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
Jasmonates (JAs) are a class of oxylipin phytohormones including jasmonic acid (JA) and derivatives that regulate plant growth, development and biotic and abiotic stress. A number of transporters have been identified to be responsible for the cellular and subcellular translocation of JAs. However, the mechanistic understanding of how these transporters specifically recognize and transport JAs is scarce.
View Article and Find Full Text PDFPlant Sci
January 2025
Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
In response to environmental changes, plant roots undergo two major differentiations: the formation of the Casparian strip and the suberin lamella, both of them are widely recognized as an apoplastic diffusion barrier for nutrient and water exchange between the soil and the root vascular bundle. Suberin is a complex biopolyester composed of glycerol esters and phenolic compounds deposited in the cell walls of specific tissues such as endodermis, exodermis, periderm, seed coat and other marginal tissues. Recently, significant progress has been made due to the development of biochemical and genetic techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!