The present study aimed to investigate the role of partner of NOB1 homolog (PNO1) in esophageal cancer (EC). The expression levels of PNO1 in EC were primarily analyzed using data obtained from databases. PNO1 expression was also knocked down in EC cells (Eca‑109 and TE1) to determine the biological effects of PNO1 on tumorigenesis and . In addition, possible downstream targets of PNO1 in EC were identified. The expression levels of PNO1 were upregulated in the tumor tissues compared with that noted in normal tissues. Moreover, the knockdown (KD) of PNO1 suppressed cell proliferation, migration and invasion, and promoted cell apoptosis (P < 0.05). Furthermore, the protein expression levels of AKT1, Twist, Myc, mTOR, matrix metalloproteinase 2 (MMP2), nuclear factor (NF)‑κB p65 and β‑catenin 1 (CTNNB1) were downregulated following the KD of PNO1 in Eca‑109 cells (P < 0.05). In addition, the overexpression of CTNNB1 reversed the effects of PNO1 KD in Eca‑109 cells (P < 0.05). In conclusion, the findings of the present study suggest that PNO1 promotes EC progression by regulating AKT1, Twist, Myc, mTOR, MMP2, NF‑κB p65 and CTNNB1 expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025143 | PMC |
http://dx.doi.org/10.3892/or.2021.8036 | DOI Listing |
Brief Bioinform
November 2024
Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia.
Regulatory genes are critical determinants of cellular responses in development and disease, but standard RNA sequencing (RNA-seq) analysis workflows, such as differential expression analysis, have significant limitations in revealing the regulatory basis of cell identity and function. To address this challenge, we present the TRIAGE R package, a toolkit specifically designed to analyze regulatory elements in both bulk and single-cell RNA-seq datasets. The package is built upon TRIAGE methods, which leverage consortium-level H3K27me3 data to enrich for cell-type-specific regulatory regions.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea.
Combination therapies have emerged as a promising approach for treating complex diseases, particularly cancer. However, predicting the efficacy and safety profiles of these therapies remains a significant challenge, primarily because of the complex interactions among drugs and their wide-ranging effects. To address this issue, we introduce DD-PRiSM (Decomposition of Drug-Pair Response into Synergy and Monotherapy effect), a deep-learning pipeline that predicts the effects of combination therapy.
View Article and Find Full Text PDFDermatol Ther (Heidelb)
January 2025
Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.
Introduction: Psoriasis is characterized by aberrant keratinocyte activity and immune cell infiltration, driven by immune-mediated pathways. MicroRNAs (miRNAs) play crucial roles in regulating these processes, offering insights into disease mechanisms and therapeutic targets.
Objectives: This study aimed to investigate changes in circulating miRNAs in psoriasis patients undergoing risankizumab therapy, an anti-IL-23 monoclonal antibody, to understand its impact on disease pathogenesis and treatment response.
Cell Tissue Res
January 2025
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand.
The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!