A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing the Outbreak Risk of Epidemics Using Fuzzy Evidential Reasoning. | LitMetric

Epidemic diseases (EDs) present a significant but challenging risk endangering public health, evidenced by the outbreak of COVID-19. Compared to other risks affecting public health such as flooding, EDs attract little attention in terms of risk assessment in the current literature. It does not well respond to the high practical demand for advanced techniques capable of tackling ED risks. To bridge this gap, an adapted fuzzy evidence reasoning method is proposed to realize the quantitative analysis of ED outbreak risk assessment (EDRA) with high uncertainty in risk data. The novelty of this article lies in (1) taking the lead to establish the outbreak risk evaluation system of epidemics covering the whole epidemic developing process, (2) combining quantitative and qualitative analysis in the fields of epidemic risk evaluation, (3) collecting substantial first-hand data by reviewing transaction data and interviewing the frontier experts and policymakers from Chinese Centers for Disease Control and Chinese National Medical Products Administration. This work provides useful insights for the regulatory bodies to (1) understand the risk levels of different EDs in a quantitative manner and (2) the sensitivity of different EDs to the identified risk factors for their effective control. For instance, in the case study, we use real data to disclose that influenza has the highest breakout risk level in Beijing. The proposed method also provides a potential tool for evaluating the outbreak risk of COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8251401PMC
http://dx.doi.org/10.1111/risa.13730DOI Listing

Publication Analysis

Top Keywords

outbreak risk
16
risk
11
public health
8
risk assessment
8
risk evaluation
8
assessing outbreak
4
risk epidemics
4
epidemics fuzzy
4
fuzzy evidential
4
evidential reasoning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!