Age-related expression of prominent regulatory elements in mouse brain: catastrophic decline of FOXO3a.

Geroscience

Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada.

Published: August 2021

Aging is associated with changes in regulation, particularly among diverse regulators in the brain. We assayed prominent regulatory elements in mouse brain to explore their relationship to one another, stress, and aging. Notably, unphosphorylated (activated) forkhead transcription factor 3a (uFOXO3a) expressed exponential decline congruent with increasing age-related mortality. Decline in uFOXO3a would impact homeostasis, aging rate, stress resistance, and mortality. We also examined other regulators associated with aging and FOXO3a: protein kinase B (PKB), the mechanistic target of rapamycin (mTOR), 70 kDa ribosomal S6 kinase (P70S6K), and 5' AMP-activated protein kinase (AMPK). It would require powerful regulatory distortion, conflicting tradeoffs and/or significant damage to inflict exponential decline of a transcription factor as crucial as FOXO3a. No other regulator examined expressed an exponential pattern congruent with aging. PKB was strongly associated with decreases in uFOXO3a, but the aging pattern of PKB did not support a causal linkage. Although mTOR expressed a trend for age-related increase, this was not significant. We considered that the mTOR downstream element, P70S6K, might suppress FOXO3a, but remarkably, it expressed a strong positive association. The age-related pattern of AMPK was also incompatible. Literature suggested the immunological regulator NFĸB (nuclear factor kappa-light-chain-enhancer of activated B cells) increases with age and suppresses FOXO3a. This would inhibit apoptosis, autophagy, mitophagy, proteostasis, detoxification, antioxidants, chaperones, and DNA repair, thus exacerbating aging. We conclude that a key aspect of aging involves distortion of key regulators in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492869PMC
http://dx.doi.org/10.1007/s11357-021-00364-8DOI Listing

Publication Analysis

Top Keywords

prominent regulatory
8
regulatory elements
8
elements mouse
8
mouse brain
8
aging
8
regulators brain
8
transcription factor
8
expressed exponential
8
exponential decline
8
protein kinase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!