Aging is associated with changes in regulation, particularly among diverse regulators in the brain. We assayed prominent regulatory elements in mouse brain to explore their relationship to one another, stress, and aging. Notably, unphosphorylated (activated) forkhead transcription factor 3a (uFOXO3a) expressed exponential decline congruent with increasing age-related mortality. Decline in uFOXO3a would impact homeostasis, aging rate, stress resistance, and mortality. We also examined other regulators associated with aging and FOXO3a: protein kinase B (PKB), the mechanistic target of rapamycin (mTOR), 70 kDa ribosomal S6 kinase (P70S6K), and 5' AMP-activated protein kinase (AMPK). It would require powerful regulatory distortion, conflicting tradeoffs and/or significant damage to inflict exponential decline of a transcription factor as crucial as FOXO3a. No other regulator examined expressed an exponential pattern congruent with aging. PKB was strongly associated with decreases in uFOXO3a, but the aging pattern of PKB did not support a causal linkage. Although mTOR expressed a trend for age-related increase, this was not significant. We considered that the mTOR downstream element, P70S6K, might suppress FOXO3a, but remarkably, it expressed a strong positive association. The age-related pattern of AMPK was also incompatible. Literature suggested the immunological regulator NFĸB (nuclear factor kappa-light-chain-enhancer of activated B cells) increases with age and suppresses FOXO3a. This would inhibit apoptosis, autophagy, mitophagy, proteostasis, detoxification, antioxidants, chaperones, and DNA repair, thus exacerbating aging. We conclude that a key aspect of aging involves distortion of key regulators in the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492869 | PMC |
http://dx.doi.org/10.1007/s11357-021-00364-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!