Background: Leucin-rich repeat containing protein A (LRRC8A), a component of the volume-regulated anion channel (VRAC), is activated by cell swelling and mediates regulatory volume decrease. We previously reported the expression of and important roles for several ion transporters in various gastrointestinal cancers, which have potential as novel targets for cancer treatment; however, the significance of LRRC8A in gastric cancer (GC) remains unclear.
Materials And Methods: Knockdown experiments were performed by transfecting human GC cell lines with LRRC8A siRNA. Gene expression was then assessed using microarray analysis. Samples from 132 patients with GC were subjected to immunohistochemistry (IHC) for LRRC8A, and its relationships with clinicopathological factors and prognosis were examined.
Results: The knockdown of LRRC8A suppressed the proliferation and movement of cells and enhanced apoptosis. The results of the microarray analysis showed the up- or down-regulated expression of genes related to the p53 signaling pathway (JNK, p53, p21, Bcl-2, and FAS) in LRRC8A-knockdown cells. IHC revealed a correlation between the expression of LRRC8A and the pT status (p = 0.015), and multivariate analysis identified the strong expression of LRRC8A as an independent prognostic factor for 5-year survival in GC patients (p = 0.0231).
Conclusions: The present results indicate that LRRC8A functions as a mediator of and/or biomarker for GC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10120-021-01187-4 | DOI Listing |
Front Cell Dev Biol
December 2024
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
Ischemia-reperfusion injury is a serious clinical pathology involving multiple organs such as the heart and brain. The injury results from oxidative stress, inflammatory response and cell death triggered by restoring tissue blood flow after ischemia, leading to severe cell and tissue damage. In recent years, the volume-regulated anion channel (VRAC) has gained attention as an important membrane protein complex.
View Article and Find Full Text PDFJ Physiol
December 2024
Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA.
Volume-regulated anion channels (VRACs) are heteromeric complexes formed by proteins of the leucine-rich repeat-containing 8 (LRRC8) family. LRRC8A (also known as SWELL1) is the core subunit required for VRAC function, and it must combine with one or more of the other paralogues (i.e.
View Article and Find Full Text PDFFront Oncol
November 2024
Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China.
The increasing incidence and mortality associated with lung cancer (LC) is a significant global health challenge. The underlying mechanisms contributing to LC remain inadequately understood. However, emerging evidence suggests that the epigenetic modifier protein arginine methyltransferase 5 (PRMT5) plays a complex role in various cellular processes, including DNA repair, gene transcription, and alternative splicing, through its function in catalyzing the symmetric dimethylation of both histone and non-histone proteins.
View Article and Find Full Text PDFEMBO J
January 2025
Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland.
Volume-regulated anion channels (VRACs) are multimeric proteins composed of different paralogs of the LRRC8 family. They are activated in response to hypotonic swelling, but little is known about their specific functions. We studied two human individuals with the same congenital syndrome affecting blood vessels, brain, eyes, and bones.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Biological Sciences, Kent State University, Kent, OH, USA.
Prolonged exposure of mammalian cells to hypotonic environments stimulates the development of sometimes large and numerous vacuoles of unknown origin. Here, we investigate the nature and formation of these vacuoles, which we term LateVacs. Vacuolation starts after osmotic cell swelling has subsided and continues for many hours thereafter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!