Active control of propagating spin waves on the nanoscale is essential for beyond-CMOS magnonic computing. Here, we experimentally demonstrate reconfigurable spin-wave transport in a hybrid YIG-based material structure that operates as a Fabry-Pérot nanoresonator. The magnonic resonator is formed by a local frequency downshift of the spin-wave dispersion relation in a continuous YIG film caused by dynamic dipolar coupling to a ferromagnetic metal nanostripe. Drastic downscaling of the spin-wave wavelength within the bilayer region enables programmable control of propagating spin waves on a length scale that is only a fraction of their wavelength. Depending on the stripe width, the device structure offers full nonreciprocity, tunable spin-wave filtering, and nearly zero transmission loss at allowed frequencies. Our results provide a practical route for the implementation of low-loss YIG-based magnonic devices with controllable transport properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052321 | PMC |
http://dx.doi.org/10.1038/s41467-021-22520-6 | DOI Listing |
Ann N Y Acad Sci
January 2025
Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany.
Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Civil Engineering, Wuhan University, Wuhan 430072, China.
Fracture toughness is a critical indicator for the application of NiTi alloys in medical fields. We propose to enhance the fracture toughness of NiTi alloys by controlling the spatial grain size (GS) gradient. Utilizing rolling processes and heat treatment technology, three categories of NiTi alloys with distinct spatial GS distributions were fabricated and subsequently examined through multi-field synchronous fracture tests.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Research Group Architectural Engineering, Department of Architecture, KU Leuven, 3001 Leuven, Belgium.
Mycelium-based composites (MBCs) are highly valued for their ability to transform low-value organic materials into sustainable building materials, offering significant potential for decarbonizing the construction sector. The properties of MBCs are influenced by factors such as the mycelium species, substrate materials, fabrication growth parameters, and post-processing. Traditional fabrication methods involve combining grain spawn with loose substrates in a mold to achieve specific single functional properties, such as strength, acoustic absorption, or thermal insulation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia.
Fault ruptures induced by earthquakes pose a significant threat to constructions, particularly underground structures such as pile foundations. Among various foundation types, batter pile foundations are widely used due to their ability to resist inclined forces. To gain new insights into the response of batter pile groups to fault ruptures caused by earthquakes, this study investigates the deformation and failure mechanisms of batter pile groups due to the propagation of normal and reverse fault ruptures using 3D numerical modeling.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:
Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!