To compare antimicrobial and resource utilization with T2 Magnetic Resonance (T2MR) versus blood culture (BC) in patients with suspected bloodstream infection. We systematically searched MEDLINE, EMBASE, and CENTRAL for randomized trials or observational controlled studies of patients with suspected bloodstream infection receiving a diagnosis with T2MR or BC. Using an inverse variance meta-analysis model, we reported mortality using the risk ratio (RR) and the remaining outcomes as the mean difference (MD). Fourteen studies were included in the meta-analysis. Time to detection (MD = -81 hours; p < 0.001) and time to species identification (MD = -77 hours; p < 0.001) were faster with T2MR. Patients testing positive on T2MR received targeted antimicrobial therapy faster (-42 hours; p < 0.001) and patients testing negative on T2MR were de-escalated from empirical therapy faster (-7 hours; p = 0.02) vs. BC. Length of intensive care unit stay (MD = -5.0 days; p = 0.03) and hospital stay (MD = -4.8 days; p = 0.03) were shorter with T2MR. Mortality rates were comparable between T2MR and BC (28.9% vs. 29.9%, RR = 1.02, p = 0.86). Utilization of T2MR for identification of bloodstream pathogens provides faster time to detection, faster transition to targeted microbial therapy, faster de-escalation of empirical therapy, shorter ICU and hospital stay, and with comparable mortality rate versus BC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17434440.2021.1919508 | DOI Listing |
Food Chem
January 2025
College of Food Science and Engineering, Hainan University, Haikou 570228, China.
Hydrogen peroxide (HO) was used to modify a natural polymer, sesbania gum (SG), to prepare oxidized sesbania gum (OSG) with the aim of investigating the physicochemical properties, antimicrobial activity of polyethylene oxide (PEO), OSG, and ε-poly(lysine) (ε-PL) composite fibre membranes and their applications in fresh-cut mango preservation. The PEO/OSG/ε-PL composite fibre membranes were successfully prepared via solution blow spinning (SBS) technology. The results of a series of characterizations revealed that ε-PL was successfully loaded into the fibrous membranes, exhibited good biocompatibility, and ε-PL was better encapsulated, with the membranes.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
Background: Streptococcus mutans (S. mutans) contributes to caries. The biofilm formed by S.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, 191002, Saint Petersburg, Russia.
Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China. Electronic address:
Tetracycline antibiotics (TCs) are extensively used as broad-spectrum antimicrobials. However, their excessive use and misuse have led to serious accumulation in foods and environments, posing a significant threat to human health. To solve such public issue, we have designed a novel dual-mode detection method, integrating colorimetric sensing with surface-enhanced Raman scattering (SERS) technology, for sensitive and rapid evaluation on TCs.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China. Electronic address:
Efficient analysis of active ingredient in complex natural products is crucial for drug discovery, but developing a simple method for this is challenging. The discovery of drugs against bacterial resistance is urgent because drug-resistant bacteria produce β-lactamases, which inactivate antibiotics and increase infection risks, particularly the AmpC β-lactamase. Here, an integrated analytical model based on colorimetric sensing and magnetic nanoparticles (MNPs) affinity chromatography was developed for screening AmpC β-lactamase inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!