Modulational instability and soliton generation in chiral Bose-Einstein condensates with zero-energy nonlinearity.

Phys Rev E

Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel.

Published: March 2021

By means of analytical and numerical methods, we address the modulational instability (MI) in chiral condensates governed by the Gross-Pitaevskii equation including the current nonlinearity. The analysis shows that this nonlinearity partly suppresses the MI driven by the cubic self-focusing, although the current nonlinearity is not represented in the system's energy (although it modifies the momentum), hence it may be considered as zero-energy nonlinearity. Direct simulations demonstrate generation of trains of stochastically interacting chiral solitons by MI. In the ring-shaped setup, the MI creates a single traveling solitary wave. The sign of the current nonlinearity determines the direction of propagation of the emerging solitons.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.103.032206DOI Listing

Publication Analysis

Top Keywords

current nonlinearity
12
modulational instability
8
zero-energy nonlinearity
8
nonlinearity
6
instability soliton
4
soliton generation
4
generation chiral
4
chiral bose-einstein
4
bose-einstein condensates
4
condensates zero-energy
4

Similar Publications

Spiking neural networks seek to emulate biological computation through interconnected artificial neuron and synapse devices. Spintronic neurons can leverage magnetization physics to mimic biological neuron functions, such as integration tied to magnetic domain wall (DW) propagation in a patterned nanotrack and firing tied to the resistance change of a magnetic tunnel junction (MTJ), captured in the domain wall-magnetic tunnel junction (DW-MTJ) device. Leaking, relaxation of a neuron when it is not under stimulation, is also predicted to be implemented based on DW drift as a DW relaxes to a low energy position, but it has not been well explored or demonstrated in device prototypes.

View Article and Find Full Text PDF

Objective: Research on the link between inflammatory indicators and markers of bone metabolism is currently lacking, especially the interaction between Procollagen type 1 N-terminal propeptide (P1NP), the β-C-terminal telopeptide of type 1 collagen (β-CTX), and the fibrinogen-to-albumin ratio (FAR). This study intends to fill that knowledge gap by investigating the possible link between inflammatory indicators and bone metabolism.

Methods: This observational study included 718 individuals diagnosed with osteoporotic fractures from Kunshan Hospital Affiliated to Jiangsu University between January 2017 and July 2022.

View Article and Find Full Text PDF

Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.

View Article and Find Full Text PDF

Self-adaptive dielectrics (SADs), with the characteristics of rapid charge dissipation in electric field distortion, is regarded as the future material for package insulation of advanced electronic devices. The current landscape of SADs is incapable to achieve tunable nonlinear electrical conductivity and threshold field strength due to the inherent Schottky barrier, significantly limiting the application scenarios of SADs. Here, a strategy is reported to construct a stepped Schottky barrier through virus-like structures, which are composed of subminiature metal particles and semiconductor microspheres.

View Article and Find Full Text PDF

Highly parallel simulation tool for the design of isotachophoresis experiments.

Anal Chim Acta

February 2025

Department of Mechanical Engineering, Stanford University, 488 Escondido Mall, Stanford, CA, 94305, USA. Electronic address:

Background: Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!