In this paper, we analyze the dynamics of the Coulomb glass lattice model in three dimensions near a local equilibrium state by using mean-field approximations. We specifically focus on understanding the role of localization length (ξ) and the temperature (T) in the regime where the system is not far from equilibrium. We use the eigenvalue distribution of the dynamical matrix to characterize relaxation laws as a function of localization length at low temperatures. The variation of the minimum eigenvalue of the dynamical matrix with temperature and localization length is discussed numerically and analytically. Our results demonstrate the dominant role played by the localization length on the relaxation laws. For very small localization lengths, we find a crossover from exponential relaxation at long times to a logarithmic decay at intermediate times. No logarithmic decay at the intermediate times is observed for large localization lengths.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.103.032150DOI Listing

Publication Analysis

Top Keywords

localization length
16
coulomb glass
8
dynamical matrix
8
relaxation laws
8
localization lengths
8
times logarithmic
8
logarithmic decay
8
decay intermediate
8
intermediate times
8
localization
6

Similar Publications

Background: Risk of herpes zoster (HZ) infection increases with age and immunosuppression. We estimated the impact of HZ and post-herpetic neuralgia (PHN) on direct costs and health care resource utilization (HCRU) in patients ≥50 years, including those with comorbidities, as limited information exists in Italy.

Methods: This retrospective analysis used reimbursement data from local health authorities in Italy (January 2009-June 2022).

View Article and Find Full Text PDF

This work proposes a large aperture liquid crystal lens array based on a novel layered combined electrode (LCE) structure. A large aperture (800µm) is achieved by strategically positioning pixel electrodes on either side of the LC lens and auxiliary electrodes at its center. This design effectively doubles the LC lens aperture compared to conventional structures, achieving this at a significantly lower voltage.

View Article and Find Full Text PDF

Cylindrical microlens arrays are important optical elements for autostereoscopic display. Conventional fixed focal length cylindrical microlens arrays do not allow switching between 2D mode and 3D mode when constructing a 3D viewing zone. In contrast, cylindrical liquid crystal microlens arrays with zoom characteristics allow switching between 2D and 3D states, as well as adjusting the width of the sub-viewing zone.

View Article and Find Full Text PDF

This paper addresses the thermal instability of lasers resulting from the thermal effects of the 2 µm gain medium, proposing what we believe to be a novel compensation scheme that integrates machine learning technology with multi-segment bonded Tm: YAG crystals and negative lenses, based on the thermal focal length model of a thick thermal lens. This approach significantly optimizes thermal compensation and facilitates rapid assessment of the light-emitting behavior trends of Tm: YAG lasers. Firstly, the thermal behavior of conventional and multi-segment bonded Tm: YAG crystals is analyzed.

View Article and Find Full Text PDF

Specimen-induced aberrations limit the penetration depth of standard optical imaging techniques in vivo, mainly due to the propagation of high NA beams in a non-homogenous medium. Overcoming these limitations requires complex optical imaging systems and techniques. Implantable high NA micro-optics can be a solution to tissue induced spherical aberrations, but in order to be implanted, they need to have reduced complexity, offering a lower surface to the host immune reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!