The optimisation of paediatric CT examinations in Scotland: phase one; benchmarking current performance.

J Radiol Prot

Department of Clinical Physics and Bioengineering, Gartnavel Hospital, 1053 Great Western Road, Glasgow, G12 0YN, United Kingdom.

Published: November 2021

To benchmark the dose from paediatric head and chest examinations on computed tomography (CT) scanners throughout Scotland, to identify scanners that may require optimisation and to provide optimisation advice based on the protocols from better performing scanners. Anthropomorphic phantoms corresponding to 1, 5 and 10 year olds were sent to 50 CT scanners around Scotland. Head and chest examinations were undertaken by local staff using local techniques on each scanner with each phantom, and details of the protocols used were recorded. Computed tomography dose index (CTDI)and dose length product (DLP) were recorded post-scan. There is a significant variation in performance throughout Scotland. For head examinations, the highest DLP is 13 times the lowest for an equivalent sized phantom. For chest examinations, the highest is 128 times the lowest for an equivalent sized phantom. The wide range of CT dose measurements indicates the potential for variation in image quality across Scotland. Feedback has been provided to all participating sites on their individual results compared to the national data set. Specific feedback was provided where relevant on potential considerations for optimisation. Scanners that may be undertaking paediatric CT head and chest examinations in a sub-optimal manner throughout Scotland have been identified along with those aspects of a scan protocol that are most likely to lead to sub-optimal performance.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6498/abf901DOI Listing

Publication Analysis

Top Keywords

chest examinations
16
head chest
12
paediatric head
8
computed tomography
8
scanners scotland
8
scotland head
8
examinations highest
8
times lowest
8
lowest equivalent
8
equivalent sized
8

Similar Publications

Introduction: The present study aimed to explore the epidemiologic threats and factors associated with the coronavirus disease 2019 (COVID-19)-associated mucormycosis (CAM) epidemic that emerged in Egypt during the second COVID-19 wave. The study also aimed to explore the diagnostic features and the role of surgical interventions of CAM on the outcome of the disease in a central referral hospital.

Methodology: The study included 64 CAM patients from a referral hospital for CAM and a similar number of matched controls from COVID-19 patients who did not develop CAM.

View Article and Find Full Text PDF

The autoantibodies against the NR1 subunit are well known in the pathomechanism of NMDAR encephalitis. The dysfunction of the NR2 subunit could be a critical factor in this neurological disorder due to its important role in the postsynaptic pathways that direct synaptic plasticity. We report a case of paraneoplastic anti-NMDAR encephalitis presented alongside very severe illness.

View Article and Find Full Text PDF

: Video-assisted thoracoscopic surgery (VATS) is associated with less postoperative pain than traditional open thoracotomy. However, trocar and chest tube placement may damage the intercostal nerves, causing significant discomfort. An ultrasound-guided serratus anterior plane block (SAPB) is a promising mode of pain management; this reduces the need for opioids and the associated side-effects.

View Article and Find Full Text PDF

Cervical cancer is the most important cancer type found in women throughout the world. Numerous research studies are being performed to investigate the effectiveness of different strategies for the imaging and treatment of locally advanced cervical cancer, which are showing favorable outcomes. Brachytherapy is characterized by the application of very high radiation doses to target tumor cells with the least exposure to normal tissues.

View Article and Find Full Text PDF

An animal model of severe acute respiratory distress syndrome for translational research.

Lab Anim Res

January 2025

Department of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nung Street, Taipei, Taiwan, ROC.

Background: Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine. Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of transplanted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!