Cystic cervical lymph nodes of papillary thyroid carcinoma, tuberculosis and human papillomavirus positive oropharyngeal squamous cell carcinoma: utility of deep learning in their differentiation on CT.

Am J Otolaryngol

Departments of Radiology, Boston Medical Center, Boston University School of Medicine, One Boston Medical Center Place, Boston, MA 02118, United States; Department of Otolaryngology-Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, One Boston Medical Center Place, Boston, MA 02118, United States; Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, One Boston Medical Center Place, Boston, MA 02118, United States. Electronic address:

Published: December 2021

Objectives: Cervical lymph nodes with internal cystic changes are seen with several pathologies, including papillary thyroid carcinoma (PTC), tuberculosis (TB), and HPV-positive oropharyngeal squamous cell carcinoma (HPV+OPSCC). Differentiating these lymph nodes is difficult in the absence of a known primary tumor or reliable medical history. In this study, we assessed the utility of deep learning in differentiating the pathologic lymph nodes of PTC, TB, and HPV+OPSCC on CT.

Methods: A total of 173 lymph nodes (55 PTC, 58 TB, and 60 HPV+OPSCC) were selected based on pathology records and suspicious morphological features. These lymph nodes were divided into the training set (n = 131) and the test set (n = 42). In deep learning analysis, JPEG lymph node images were extracted from the CT slice that included the largest area of each node and fed into a deep learning training session to create a diagnostic model. Transfer learning was used with the deep learning model architecture of ResNet-101. Using the test set, the diagnostic performance of the deep learning model was compared against the histopathological diagnosis and to the diagnostic performances of two board-certified neuroradiologists.

Results: Diagnostic accuracy of the deep learning model was 0.76 (=32/42), whereas those of Radiologist 1 and Radiologist 2 were 0.48 (=20/42) and 0.41 (=17/42), respectively. Deep learning derived diagnostic accuracy was significantly higher than both of the two neuroradiologists (P < 0.01, respectively).

Conclusion: Deep learning algorithm holds promise to become a useful diagnostic support tool in interpreting cervical lymphadenopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjoto.2021.103026DOI Listing

Publication Analysis

Top Keywords

deep learning
32
lymph nodes
24
learning model
12
learning
9
cervical lymph
8
papillary thyroid
8
thyroid carcinoma
8
oropharyngeal squamous
8
squamous cell
8
cell carcinoma
8

Similar Publications

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

View Article and Find Full Text PDF

Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!