Grapevine (Vitis vinifera L.) is prone to fungal and oomycete diseases. Downy and powdery mildews and grey mold, are caused by Plasmopara viticola, Erisiphe necator and Botrytis cinerea, respectively. P. viticola and E. necator are obligatory biotrophs whereas B. cinerea is a necrotroph. In tolerant grapevine cultivars, plant-pathogen interaction induces defence responses, including metabolite and protein accumulation and hypersensitive reaction. Lipid and lipid-derived molecules may have a key role in the activation of defence mechanisms. Previous results suggest that V. vinifera cv Regent tolerance to P. viticola may be mediated in the first hours post inoculation by fatty acid (FA) associated signalling. In the present study we characterized FA modulation in V. vinifera cv Regent leaves upon inoculation with P. viticola, E. necator and B. cinerea and correlated FA modulation with the expression profiles of genes encoding the FA desaturases FAD6 and FAD8. In all the interactions, a progressive desaturation of stearic acid to α-linolenic acid, precursor of jasmonic acid, occurred, which was observed for a longer period against B. cinerea. Our results provide evidence of a distinct FA meditated signalling pattern in grapevine interaction with biotrophs and necrotrophs. While the interaction with the biotrophs may trigger a higher synthesis of polyunsaturated FA (PUFA) at early time-points with a tendency to return to basal levels, the interaction with B. cinerea may trigger a later and more durable induction of PUFA synthesis. In all interactions, membrane fluidity modulation occurred, which may be crucial to maintain cellular function during infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.04.001 | DOI Listing |
Physiol Plant
December 2024
Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
The barley powdery mildew disease caused by the biotrophic fungus Blumeria hordei (Bh) poses enormous risks to crop production due to yield and quality losses. Plants and fungi can produce and release volatile organic compounds (VOCs) that serve as signals in plant communication and defense response to protect themselves. The present study aims to identify VOCs released by barley (Hordeum vulgare) during Bh-infection and to decipher VOC-induced disease resistance in receiver plants.
View Article and Find Full Text PDFNew Phytol
December 2024
Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA.
PLoS Pathog
November 2024
Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America.
Plant J
November 2024
CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen that causes downy mildew disease on Arabidopsis. This obligate biotroph manipulates the homeostasis of its host plant by secreting numerous effector proteins, among which are the RxLR effectors. Identifying the host targets of effectors and understanding how their manipulation facilitates colonization of plants are key to improve plant resistance to pathogens.
View Article and Find Full Text PDFCurr Res Microb Sci
October 2024
Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria.
Brown algae belong to the class Phaeophyceae which are mainly multicellular, photosynthetic organisms, however they evolved independently from terrestrial plants, green and red algae. In the past years marine aquaculture involving brown algae has gained enormous momentum. In both natural environments and aquaculture, brown algae are susceptible to infection by various prokaryotic and eukaryotic parasites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!