Hyaluronic acid (HA), a naturally occurring biopolymer composed of repeating units of d-glucuronic acid and N-acetyl-glucosamine, is widely used as principal component of drugs, medical devices, nutraceuticals and cosmetics. Chemical modifications of HA or the presence of unmodified HA in complex matrices often brings common analytical techniques to fail its identification or quantification. In this work, a specific method for the quantification of HA and HA derivatives was developed and tested. After strong acid hydrolysis, polysaccharide depolymerization and N-acetylglucosamine deacetylation, quantitatively yielded glucosamine residues were derivatized using Fluorenylmethyloxycarbonyl chloride (FMOC), separated and quantitated by means of HPLC equipped with UV detection. The method was partially validated according to ICH Q2(R1) and successfully applied on different viscosupplements composed by modified HA or medical devices containing unmodified HA in complex matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2021.108314DOI Listing

Publication Analysis

Top Keywords

complex matrices
12
medical devices
8
unmodified complex
8
versatile robust
4
robust analytical
4
analytical method
4
method hyaluronan
4
hyaluronan quantification
4
quantification crosslinked
4
crosslinked products
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!