AI Article Synopsis

  • Researchers developed a deep learning model named BS-Net to analyze Chest X-ray images (CXR) and score lung damage in COVID-19 patients using the Brixia score, which has proven useful for monitoring patient prognosis in a hospital in Italy during the pandemic.
  • The model employs a weakly supervised learning method that integrates multiple tasks like segmentation and scoring, training on a clinical dataset of nearly 5,000 annotated CXR images to ensure accuracy and reliability.
  • The BS-Net outperforms human annotators and includes high-resolution explanation maps to visualize its decision-making process, and the model is adaptable for use in other clinical environments, with all related resources made available for public research.

Article Abstract

In this work we design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients. Such semi-quantitative scoring system, namely Brixia score, is applied in serial monitoring of such patients, showing significant prognostic value, in one of the hospitals that experienced one of the highest pandemic peaks in Italy. To solve such a challenging visual task, we adopt a weakly supervised learning strategy structured to handle different tasks (segmentation, spatial alignment, and score estimation) trained with a "from-the-part-to-the-whole" procedure involving different datasets. In particular, we exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital. Our BS-Net demonstrates self-attentive behavior and a high degree of accuracy in all processing stages. Through inter-rater agreement tests and a gold standard comparison, we show that our solution outperforms single human annotators in rating accuracy and consistency, thus supporting the possibility of using this tool in contexts of computer-assisted monitoring. Highly resolved (super-pixel level) explainability maps are also generated, with an original technique, to visually help the understanding of the network activity on the lung areas. We also consider other scores proposed in literature and provide a comparison with a recently proposed non-specific approach. We eventually test the performance robustness of our model on an assorted public COVID-19 dataset, for which we also provide Brixia score annotations, observing good direct generalization and fine-tuning capabilities that highlight the portability of BS-Net in other clinical settings. The CXR dataset along with the source code and the trained model are publicly released for research purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010334PMC
http://dx.doi.org/10.1016/j.media.2021.102046DOI Listing

Publication Analysis

Top Keywords

bs-net learning
4
learning covid-19
4
covid-19 pneumonia
4
pneumonia severity
4
severity large
4
large chest
4
chest x-ray
4
dataset
4
x-ray dataset
4
dataset work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!