Juvenile hormone in spiders. Is this the solution to a mystery?

Gen Comp Endocrinol

University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40007 Katowice, Poland.

Published: July 2021

The juvenile hormone (JH) plays a crucial role in arthropod physiological processes, e.g., the regulation of metamorphosis, development, and reproduction (the vitellogenesis, the development of gonads, egg production). Still, data about this sesquiterpenoid hormone in spiders (Araneae) are rudimentary and equivocal. The presence of the JH or its precursors (e.g. methyl farnesoate) is not confirmed in spiders. The site of synthesis of its is still undetermined. No receptors of the JH are identified in spiders and thus, the molecular mechanism of action of this group of hormones is still unknown. Here we show by using the phylogenetic analysis and qPCR method the presence of the transcript of the enzyme catalyzing the last phase of the JH biosynthesis pathway (epox CYP15A1), the JH receptor (Met), and a possible candidate to the methyl farnesoate receptor (USP) in the various tissues and stages of ontogenesis in both sexes of spider Parasteatoda tepidariorum. Our results indicate that the juvenile hormone and/or methyl farnesoate presence is possible in the species of spider P. tepidariorum. The presence of the Ptepox CYP15A1 gene suggests that the main site of the juvenile hormone synthesis can be the integument and not the Schneider organ 2. It also seems that the juvenile hormone and/or methyl farnesoate can be hormones with biological activity due to the presence of the transcript of insect and crustacean JH/MG receptor - Met. The Ptepox CYP15A1, PtMet, and Ptusp expression are sex-, tissue-and time-specific. This study is the first report about the presence of the Ptepox CYP15A1 and PtMet transcripts in the Arachnida, which may indicate the presence of the juvenile hormone and/or methyl farnesoate in spiders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2021.113781DOI Listing

Publication Analysis

Top Keywords

juvenile hormone
24
methyl farnesoate
20
hormone and/or
12
and/or methyl
12
ptepox cyp15a1
12
hormone spiders
8
presence transcript
8
receptor met
8
presence ptepox
8
cyp15a1 ptmet
8

Similar Publications

Functions of thyroid hormone signaling in regulating melanophore, iridophore, erythrophore, and pigment pattern formation in spotted scat (Scatophagus argus).

BMC Genomics

January 2025

Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.

Background: Spotted scat, a marine aquaculture fish, has variable body color development stages during their ontogenesis. However, the regulatory mechanism of body color patterns formation was poorly understood. Thyroid hormones (TH) function as an important endocrine factor in regulating metamorphosis.

View Article and Find Full Text PDF

Nocturnin promotes NADH and ATP production for juvenile hormone biosynthesis in adult insects.

Pest Manag Sci

January 2025

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.

Background: Juvenile hormone (JH) is a key endocrine governing insect development, metamorphosis and reproduction. JH analogs have offered great potential for insect pest control. In adulthood, JH titer rapidly increases in the previtellogenic period and reaches a peak in the vitellogenic phase.

View Article and Find Full Text PDF

Compounds Involved in the Invasive Characteristics of .

Molecules

January 2025

Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan.

L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. infests diverse habitats with a wide range of climatic factors, and its population increases aggressively as one of the world's 100 worst invasive alien species.

View Article and Find Full Text PDF

This study focuses on the regulatory effects of genes encoding the juvenile hormone (JH) receptor methoprene-tolerant () and transcription factor krüppel homolog 1 () on the reproductive capacity of male adults. and expression levels were analyzed in males fed on artificial diets with and without JH by quantitative real-time PCR, and the effects of and on male reproduction were analyzed by RNA interference technology. transcription levels in 5- and 10-day-old males fed with a JH-supplemented diet were lower than those without JH.

View Article and Find Full Text PDF

and miRNA regulate mammalian pubertal initiation and Gonadotropin-releasing hormone (GnRH) production. However, it remains unclear which signaling pathways regulates to modulate GnRH production. In this study, the mRNA expression levels of and in the pubertal and juvenile goat hypothalamus and pituitary gland were detected, and expression in the pubertal hypothalamus decreased significantly compared with that in juvenile tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!