In this article, we consider the distributed fault-tolerant resilient consensus problem for heterogeneous multiagent systems (MASs) under both physical failures and network denial-of-service (DoS) attacks. Different from the existing consensus results, the dynamic model of the leader is unknown for all followers in this article. To learn this unknown dynamic model under the influence of DoS attacks, a distributed resilient learning algorithm is proposed by using the idea of data-driven. Based on the learned dynamic model of the leader, a distributed resilient estimator is designed for each agent to estimate the states of the leader. Then, a new adaptive fault-tolerant resilient controller is designed to resist the effect of physical failures and network DoS attacks. Moreover, it is shown that the consensus can be achieved with the proposed learning-based fault-tolerant resilient control method. Finally, a simulation example is provided to show the effectiveness of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2021.3070869DOI Listing

Publication Analysis

Top Keywords

distributed resilient
12
fault-tolerant resilient
12
dos attacks
12
dynamic model
12
control method
8
physical failures
8
failures network
8
model leader
8
resilient
6
learning-based distributed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!