Largely Tunable Magneto-Coloration of Monolayer 2D Materials via Size Tailoring.

ACS Nano

Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Published: June 2021

Magnetically influenced light-matter interaction provides a contactless, noninvasive and power-free way for material characterization and light modulation. Shape anisotropy of active materials mainly determines the sensitivity of magneto-optic response, thereby making magnetic two-dimensional (2D) materials suitable in achieving the giant magneto-birefringence effect as discovered recently. Consequently, relationship between magneto-birefringence response and shape anisotropy of 2D materials is critical but has remained elusive, restricting its widespread applications. Here, we report the highly sensitive and largely tunable magneto-coloration via manipulating the shape-anisotropy of magnetic 2D materials. We reveal a quadratic increasing relationship between the magneto-optic Cotton-Mouton coefficient and the lateral size of 2D materials and achieve a more than one order of magnitude tunable response. This feature enables the engineerable transmissive magneto-coloration of 2D materials by tailoring their shape anisotropy. Our work deepens the understanding of the tunability of magneto-optic response by size effect of active materials, offering various opportunities for their applications in vast areas where color is concerned.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c02259DOI Listing

Publication Analysis

Top Keywords

shape anisotropy
12
tunable magneto-coloration
8
materials
8
active materials
8
magneto-optic response
8
magneto-coloration monolayer
4
monolayer materials
4
materials size
4
size tailoring
4
tailoring magnetically
4

Similar Publications

Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror.

Nano Lett

January 2025

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as ≈ 0.

View Article and Find Full Text PDF

Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos.

View Article and Find Full Text PDF

Controlling Microparticle Aspect Ratio via Photolithography for Injectable Granular Hydrogel Formation and Cell Delivery.

ACS Biomater Sci Eng

January 2025

Weldon School of Biomedical Engineering, Purdue University, West Lafayette 47907-2050, Indiana, United States.

Granular hydrogels are injectable and inherently porous biomaterials assembled through the packing of microparticles. These particles typically have a symmetric and spherical shape. However, recent studies have shown that asymmetric particles with high aspect ratios, such as fibers and rods, can significantly improve the mechanics, structure, and cell-guidance ability of granular hydrogels.

View Article and Find Full Text PDF

The initiation of embryogenesis in the kelp Saccharina latissima is accompanied by significant anisotropy in cell shape. Using monoclonal antibodies, we show that this anisotropy coincides with a spatio-temporal pattern of accumulation of alginates in the cell wall of the zygote and embryo. Alginates rich in guluronates as well as sulphated fucans show a homogeneous distribution in the embryo throughout Phase I of embryogenesis, but mannuronate alginates accumulate mainly on the sides of the zygote and embryo, disappearing as the embryo enlarges at the start of Phase II.

View Article and Find Full Text PDF

High Speed Sintering of Polyamide 12: From Powder to Part Properties.

Polymers (Basel)

December 2024

Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Universitaetsstrasse 9, 95447 Bayreuth, Germany.

High Speed Sintering (HSS) is an additive manufacturing process with great potential to produce complex, high-quality polymer parts on an industrial scale. However, little information is currently available on the characteristics of the powder materials used and the part properties that can be achieved. This is also the case for the standard material polyamide 12 (PA 12) and the first commercially available HSS machine, the VX200 HSS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!