Characterizing the sorption of drugs onto polyvinylchloride (PVC) and polyethylene (PE) materials in terms of thermodynamic adsorption properties and atomistic details (local arrangements, orientation, and diffusion) is fundamental for the development of alternative materials that would limit drug sorption phenomena and plasticizer release. Here, a combination of experiments and sophisticated calculations of potential of mean forces are carried out to investigate the sorption of paracetamol and diazepam to PE and PVC surfaces. The simulated Gibbs free energies of adsorption are in line with the experimental interpretations. The polymer-drug-water interface is then characterized at the molecular scale by an in-depth investigation of local properties such as density, orientation, and diffusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c03284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!