Micrometer-sized water droplets dispersed in diesel fuel are stabilized by the fuel's surface-active additives, such as mono-olein and poly(isobutylene)succinimide (PIBSI), making the droplets challenging for coalescing filters to separate. Dynamic material properties found from interfacial rheology are known to influence the behavior of microscale droplets in coalescing filters. In this work, we study the interfacial dilatational properties of water-in-fuel interfaces laden with mono-olein and PIBSI, with a fuel phase of clay-treated ultra-low sulphur diesel (CT ULSD). First, the dynamic interfacial tension (IFT) is measured using pendant drop tensiometry, and a curvature-dependent form of the Ward and Tordai diffusion equation is applied for extracting the diffusivity of the surfactants. Additionally, Langmuir kinetics are applied to the dynamic IFT results to obtain the maximum surface concentration (Γ∞) and ratio of adsorption to desorption rate constants (κ). We then use a capillary pressure microtensiometer to measure the interfacial dilatational modulus, and further extract the characteristic frequency of surfactant exchange (ω0) by fitting a model assuming diffusive exchange between the interface and bulk. In this measurement, 50-100 μm diameter water droplets are pinned at the tip of a glass capillary in contact with the surfactant-containing fuel phase, and small amplitude capillary pressure oscillations over a range of frequencies from 0.45-20 rad s-1 are applied to the interface, inducing changes in interfacial tension and area to yield the dilatational modulus, E*(ω). Over the range of concentrations studied, the dilatational modulus of CT ULSD with either mono-olein or PIBSI increases with a decrease in bulk concentration and plateaus at the lowest concentrations of mono-olein. Characteristic frequency (ω0) values extracted from the fit are compared with those calculated using equilibrium surfactant parameters (κ and Γ∞) derived from pendant drop tensiometry, and good agreement is found between these values. Importantly, the results imply that diffusive exchange models based on the equilibrium relationships between surfactant concentration and interfacial tension can be used to infer the dynamic dilatational behavior of complex surfactant systems, such as the water-in-diesel fuel interfaces in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140520 | PMC |
http://dx.doi.org/10.1039/d1sm00064k | DOI Listing |
Langmuir
January 2025
Research Focus Area for Chemical Resource Beneficiation, Catalysis and Synthesis Research Group, North-West University, 11 Hoffman Street, Potchefstroom 2522, South Africa.
This study investigates the surfactant properties and efficiency of linear and Guerbet-type amino acid surfactants. Utilizing a Wilhelmy plate method, we assessed the colloidal efficiency of these surfactants, with the lowest observed critical micelle concentration at 0.046 mmol L, significantly reducing surface tension to as low as 25.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, CHINA.
Electrolysis of carbon dioxide (CO2) in acid offers a promising route to overcome CO2 loss in alkaline and neutral electrolytes, but requires concentrated alkali cations (typical ≥3 M) to mitigate the trade-off between low pH and high hydrogen evolution reaction (HER) rate, causing salt precipitation. Here we report a strategy to resolve this problem by introducing tensile strain in a copper (Cu) catalyst, which can selectively reduce CO2 to valuable multicarbon products, particularly ethylene, in a pH 1 electrolyte with 1 M potassium ions. We find that the tension-strained Cu creates an electron-rich surface that concentrates diluted potassium ions, contributing to CO2 activation and HER suppression.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFDes Monomers Polym
January 2025
Department of Physics Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia.
Polydimethylsiloxane (PDMS) is a polymer that can be used as a vitreous substitute. To fulfill the need for PDMS on a large scale, synthesis of PDMS in a large number is also needed. Therefore, intensive research is needed to produce PDMS in large quantities.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
Phytochlorins, a class of plant-derived tetrapyrroles, show great potential as sonosensitizers in sonodynamic therapy (SDT). The development of new phytochlorin-based sonosensitizers has significantly improved SDT, yet the absence of specialized sonodynamic systems limits their clinical translation. Herein, a dedicated ultrasound system along with a detailed step-by-step sonodynamic process from in vitro to in vivo is developed to activate phytochlorin-based sonosensitizers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!