Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-dimensional homogeneous lattice gauge theories caused by local constraints imposed by gauge invariance. We show that also genuinely interacting systems in two spatial dimensions can become nonergodic as a consequence of this mechanism. This result is all the more surprising since the conventional many-body localization is conjectured to be unstable in two dimensions; hence the gauge invariance represents an alternative robust localization mechanism surviving in higher dimensions in the presence of interactions. Specifically, we demonstrate nonergodic behavior in the quantum link model by obtaining a bound on the localization-delocalization transition through a classical correlated percolation problem implying a fragmentation of Hilbert space on the nonergodic side of the transition. We study the quantum dynamics in this system by introducing the method of "variational classical networks," an efficient and perturbatively controlled representation of the wave function in terms of a network of classical spins akin to artificial neural networks. We identify a distinguishing dynamical signature by studying the propagation of line defects, yielding different light cone structures in the localized and ergodic phases, respectively. The methods we introduce in this work can be applied to any lattice gauge theory with finite-dimensional local Hilbert spaces irrespective of spatial dimensionality.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.130401DOI Listing

Publication Analysis

Top Keywords

lattice gauge
12
disorder-free localization
8
gauge theory
8
gauge invariance
8
gauge
5
localization interacting
4
interacting lattice
4
theory disorder-free
4
localization introduced
4
introduced mechanism
4

Similar Publications

Generative design of crystal structures by point cloud representations and diffusion model.

iScience

January 2025

School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.

Efficiently generating energetically stable crystal structures has long been a challenge in material design, primarily due to the immense arrangement of atoms in a crystal lattice. To facilitate the discovery of stable materials, we present a framework for the generation of synthesizable materials leveraging a point cloud representation to encode intricate structural information. At the heart of this framework lies the introduction of a diffusion model as its foundational pillar.

View Article and Find Full Text PDF

Strongly Coupled 𝒫𝒯-Symmetric Models in Holography.

Entropy (Basel)

December 2024

Instituto de Física Teórica UAM/CSIC, Campus de Cantoblanco, c/Nicolás Cabrera 13-15, 28049 Madrid, Spain.

Non-Hermitian quantum field theories are a promising tool to study open quantum systems. These theories preserve unitarity if PT symmetry is respected, and in that case, an equivalent Hermitian description exists via the so-called Dyson map. Generically, PT-symmetric non-Hermitian theories can also feature phases where PT symmetry is broken and unitarity is lost.

View Article and Find Full Text PDF

Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe NEMS.

View Article and Find Full Text PDF

Multiscale Structural Control by Matrix Engineering for Polydimethylsiloxane Filled Graphene Woven Fabric Strain Sensors.

Small

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Elastomer cure shrinkage during composite fabrication often induces wrinkling in conductive networks, significantly affecting the performance of flexible strain sensors, yet the specific roles of such wrinkles are not fully understood. Herein, a highly sensitive polydimethylsiloxane-filled graphene woven fabric (PDMS-f-GWF) strain sensor by optimizing the PDMS cure shrinkage through careful adjustment of the base-to-curing-agent ratio is developed. This sensor achieves a gauge factor of ∼700 at 25% strain, which is over 6 times higher than sensors using commercially formulated PDMS.

View Article and Find Full Text PDF

A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!