The number of compact structures of a single condensed polymer (SCP), with similar free energies, grows exponentially with the degree of polymerization. In analogy with structural glasses (SGs), we expect that at low temperatures chain relaxation should occur by activated transitions between the compact metastable states. By evolving the states of the SCP, linearly coupled to a reference state, we show that, below a dynamical transition temperature (T_{d}), the SCP is trapped in a metastable state leading to slow dynamics. At a lower temperature, T_{K}≠0, the configurational entropy vanishes, resulting in a thermodynamic random first order ideal glass transition. The relaxation time obeys the Vogel-Fulcher-Tamman law, diverging at T=T_{0}≈T_{K}. These findings, accord well with the random first order transition theory, establishing that SCP and SG exhibit similar universal characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.137801DOI Listing

Publication Analysis

Top Keywords

random order
12
order transition
8
transition theory
8
single condensed
8
condensed polymer
8
transition
4
theory glassy
4
glassy dynamics
4
dynamics single
4
polymer number
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!